Sensing the Dynamic Response of Photosynthesis to
Ablotic Stressors with Forced Oscillating Light
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P Introduction and Rationale To systematically investigate photosynthesis in non-steady-state conditions, a frequency-domain chlorophyll
_— fluorescence (ChlF) 12l measurement protocol was established. Actinic light was modulated as a harmonic
In nature, solar irradiance is characterized by variable fluctuations in time and intensity. function at selected frequencies, generating oscillating (sinusoidal) light.
Photosynthetic organisms evolved a range of adaptive mechanisms to cope with these This method was implemented to measure the photosynthesis response in plants exposed to High Temperature
dynamic light environments. (HT) or High Light (HL).
The response of photosynthesis is typically studied in steady-state conditions, such as in Advantage: This method allows to detect fingerprints of dynamic acclimation in light-adapted plants (no need for
constant light and with dark - light or low light - high light transitions. dark-adaptation).
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< Control: irradiance = 80-90 UE m s1; air temperature = 22-24°C (light) and | s T ey P requeney i T " redueney i
=~ 16-17°C (dark); leaf temperature = 22-24°C during measurements. 7 0] Fregquency scan
% HT: irradiance = 100-110 pE m- s-1; air temperature = 41-42°C (light) and = g .
25-26°C (dark), with intermediate steps at = 36-38°C; leaf temperature = 22- |3 30| 1.4 {\i\ B
24°C during measurements. g 259 | |
. o : - 2 el it : - 2] [ : “ A novel macroscopic fluorescence Iimaging system was
< HL: irradiance at = 500-550 pE m= s, with intermediate steps at = 250-260 |z | ! . . .
UE m2 s air temperature = 22-24°C (light) and = 16-17°C (dark); leaf |&* i : iImplemented (Dr. lan Coghill, CNRS, Paris, France, DREAM).
temperature = 22-24°C during measurements. B 101/ | “* Agycitation = 045 NM; A otection = 690 Nm (50 nm bandwidth).
< Photoperiod was 12h/12h light/dark. i < A specific illumination protocol was applied, based on the light
N . - C 2 ~ -
<+ Mature plants were exposed to HT or HL for three consecutive days and S e e e T N ey ] saturation coefficient E(®. U, = 2.5 B and U, = 0.25 B,
measured every day at +4 hours in the light period. rradiance {umol photons m=s ™) | . Frequency-scan from = 0.008 Hz (T = 128 s) to 4 Hz (T = 0.25 s).
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i 9 “*Conclusion: The frequency-domain ChlF analysis can detect
. L 15 frequency-speuflc fingerprints of stress response In light-
S . 5 adapted plants without dark adaptation.
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0 . 0 < Machine learning algorithms to categorize stress responses In a fast and
: g reliable manner (collaboration with SONY CSL, DREAM).
% s s < Application of the method to crop plants under relevant growth
environments.
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10 10 10 10 10 10 <+ Exploration of various stress scenarios, such as nutrient deficiency,
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| Il drought, biotic stress, and combination of multiple stress factors.
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