001     1050636
005     20260115090954.0
020 _ _ |a 978-3-031-91834-6 (print)
020 _ _ |a 978-3-031-91835-3 (electronic)
024 7 _ |a 10.1007/978-3-031-91835-3_3
|2 doi
024 7 _ |a 0302-9743
|2 ISSN
024 7 _ |a 1611-3349
|2 ISSN
037 _ _ |a FZJ-2026-00388
100 1 _ |a Del Bue, Alessio
|0 P:(DE-HGF)0
|b 0
|e Editor
111 2 _ |a Computer Vision – ECCV 2024 Workshop
|c Milan
|d 2024-09-29 - 2024-10-04
|w Italy
245 _ _ |a A Framework for Enhanced Decision Support in Digital Agriculture Using Explainable Machine Learning
260 _ _ |a Cham
|c 2025
|b Springer Nature Switzerland
300 _ _ |a 31 - 45
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1768464502_3993
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a Lecture Notes in Computer Science
|v 15625
520 _ _ |a Model explainability, which integrates interpretability with domain knowledge, is crucial for assessing the reliability of machine learning frameworks, particularly in enhancing decision support in digital agriculture. Efforts have been made to establish a clear definition of explainability and develop new interpretability techniques. Assessing interpretability is essential to fully harness the potential of explainability. In this paper, we compare Gradient-weighted Class Activation Mapping, an interpretability technique for Convolutional Neural Networks, with Raw Attentions for Vision Transformers. We analyze both methods in an image-based task to classify the harvest-readiness of cauliflower plants. By developing a model-agnostic framework to compare models based on explainability, we pave the way for more reliable digital agriculture systems.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef Book Series, Journals: juser.fz-juelich.de
700 1 _ |a Canton, Cristian
|0 P:(DE-HGF)0
|b 1
|e Editor
700 1 _ |a Pont-Tuset, Jordi
|0 P:(DE-HGF)0
|b 2
|e Editor
700 1 _ |a Tommasi, Tatiana
|0 P:(DE-HGF)0
|b 3
|e Editor
700 1 _ |a Emam, Ahmed
|0 0009-0001-8371-3414
|b 4
|e Corresponding author
700 1 _ |a Farag, Mohamed
|0 0000-0003-4301-1140
|b 5
700 1 _ |a Kierdorf, Jana
|0 0000-0003-1145-1555
|b 6
700 1 _ |a Klingbeil, Lasse
|0 0000-0002-1941-150X
|b 7
700 1 _ |a Rascher, Uwe
|0 P:(DE-Juel1)129388
|b 8
700 1 _ |a Roscher, Ribana
|0 P:(DE-Juel1)195965
|b 9
773 _ _ |a 10.1007/978-3-031-91835-3_3
856 4 _ |u https://dl.acm.org/doi/abs/10.1007/978-3-031-91835-3_3
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129388
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)195965
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21