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I. OVERVIEW



• To use quantum annealing for solving a problem à Map it to a 
Hamiltonian 

𝑯𝑷 = −$
"#$

%

ℎ"&𝜎"& −$
{",)}

𝐽",)& 𝜎"&𝜎)&

• Annealing Hamiltonian 𝐻 = 𝐴 𝑠 𝐻+ + 𝐵 𝑠 𝐻,
where,   

𝑠 = 𝑡/𝑇-
   𝑇- = Total annealing time

	 𝐻+ = −$
"#$

%

𝜎".
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1.1 STANDARD ANNEALING

𝐴 0 ≫ 𝐵 0
𝐴 1 ≪ 𝐵(1)
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1.2 FAST ANNEALING

• Standard annealing: Shortest annealing time possible = 500 ns

• Fast annealing: 
§ Can explore shorter annealing times (up to 5 ns)
§ However, it is not possible to have non-zero fields (ℎ") in 𝐻,

• Way around for having effective 𝒉𝒊 fields using flux bias offset:
§ Select an unused spin k on D-Wave
§ Bias the spin by a large flux offset (h) è Fixes the extra spin to ↑ or ↓ depending on 

sign of h
§ Set the field of spin i to 0 and  𝐽",0 = ℎ"



• Description:
§ Start in a (low-energy) classical state
§ Increase the strength of quantum fluctuations (increase A(s) and 

decrease B(s)) till certain reversal distance 𝑠1
§ Optional wait at 𝑠1
§ Decrease the strength of quantum fluctuations (decrease A(s) and 

increase B(s))
• Schemes: 
§ Waiting time scan (WTS): Do different runs with fixed 𝑡1 = 𝑡2 = 1𝜇𝑠, 

and varying 𝑡3, collect the final p(𝑡456),
§ Annealing times scan (ATS): Do different runs with 𝑡3 = 0 and 

varying 𝑡1 = 𝑡2, collect the final p(𝑡456),

where 𝑡456 = 𝑡1 + 𝑡3 + 𝑡2
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1.3 REVERSE ANNEALING

s

t
𝑡! 𝑡" 𝑡#

1

𝑠!

0



II. D-WAVE RESULTS



Initial state = ⟩| ↓
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2.1 REVERSE ANNEALING
2.1.1   1-spin

𝑯𝑷 = 𝟎. 𝟏	𝝈𝒛

Fit to Boltzmann distribution: 𝑝" =
7"	4#$%"

∑& 7&	4
#$%&

𝑠1 = 0.7

𝛽 = 6.93 (𝑇 = 29.7	𝑚𝐾)
𝑝↑ = 0.2
𝑝↓ = 0.8

Initial state = ⟩| ↑

[1]  V. Mehta, H. De Raedt, K. Michielsen, F. Jin, arXiv:2502.08575v1 
(2025)

https://arxiv.org/abs/2502.08575v1
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2.1 REVERSE ANNEALING
2.1.2   2-spin

	 	 2S1
𝐻, = −𝜎$& −𝜎<& +0.95𝜎$&𝜎<&

	 	 2S2
𝐻, = −𝜎$& −𝜎<& +𝜎$&𝜎<&

	 	 2S3
𝐻, = −0.95𝜎$& −0.95𝜎<& +𝜎$&𝜎<&

𝛽 = 6.93 (𝑇 = 29.7	𝑚𝐾)

𝑝↑↑ = 0.5
𝑝↑↓ = 0.25
𝑝↓↑ = 0.25
𝑝↓↓ = 0

𝑝↑↑ = 0.33
𝑝↑↓ = 0.33
𝑝↓↑ = 0.33
𝑝↓↓ = 0

𝑠1 = 0.7

𝑝↑↑ = 0.2
𝑝↑↓ = 0.4
𝑝↓↑ = 0.4
𝑝↓↓ = 0

[1]  V. Mehta, H. De Raedt, K. Michielsen, F. Jin, arXiv:2502.08575v1 
(2025)

https://arxiv.org/abs/2502.08575v1
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2.1 REVERSE ANNEALING
2.1.3   Ferromagnetic spin chain

𝛽 = 7.64 (𝑇 = 27	𝑚𝐾)

𝐻, = −0.1$
"#$

%

𝜎"&𝜎"=$&

𝑠1 = 0.7

< 𝐸 >	=
∑" 𝑔"𝐸"𝑒>?@"
∑" 𝑔"𝑒>?@"

= −𝐽 𝑁 − 1 tanh𝛽𝐽

[1]  V. Mehta, H. De Raedt, K. Michielsen, F. Jin, arXiv:2502.08575v1 
(2025)

https://arxiv.org/abs/2502.08575v1
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2.2 STANDARD ANNEALING

	 	 2S1
𝐻, = −𝜎$& −𝜎<& +0.95𝜎$&𝜎<&

	 	 2S2
𝐻, = −𝜎$& −𝜎<& +𝜎$&𝜎<&

𝛽 = 6.93 (𝑇 = 29.7	𝑚𝐾)

𝑝↑↑ = 0.5
𝑝↑↓ = 0.25
𝑝↓↑ = 0.25
𝑝↓↓ = 0

𝑝↑↑ = 0.33
𝑝↑↓ = 0.33
𝑝↓↑ = 0.33
𝑝↓↓ = 0

𝑠1 = 0.7

𝑝↑↑ = 0.20
𝑝↑↓ = 0.40
𝑝↓↑ = 0.40
𝑝↓↓ = 0Dips & Bumps

	 	 2S3
𝐻, = −0.95𝜎$& −0.95𝜎<& +𝜎$&𝜎<&

2-spin

[2]  V. Mehta, H. De Raedt, K. Michielsen, F. Jin, 
arXiv:2503.21565v1(2025)
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2.3 FAST ANNEALING

	 	 2S1
𝐻, = −𝜎$& −𝜎<& +0.95𝜎$&𝜎<&

	 	 2S2
𝐻, = −𝜎$& −𝜎<& +𝜎$&𝜎<&

𝛽 = 6.93 (𝑇 = 29.7	𝑚𝐾)

𝑝↑↑ = 0.5
𝑝↑↓ = 0.25
𝑝↓↑ = 0.25
𝑝↓↓ = 0

𝑝↑↑ = 0.33
𝑝↑↓ = 0.33
𝑝↓↑ = 0.33
𝑝↓↓ = 0

𝑠1 = 0.7

𝑝↑↑ = 0.20
𝑝↑↓ = 0.40
𝑝↓↑ = 0.40
𝑝↓↓ = 0No Dips & Bumps

	 	 2S3
𝐻, = −0.95𝜎$& −0.95𝜎<& +𝜎$&𝜎<&

2-spin

[2]   V. Mehta, H. De Raedt, K. Michielsen, F. Jin, 
arXiv:2503.21565v1(2025)



III. SIMULATIONS



3.1   TIME-DEPENDENT SCHRÖDINGER EQUATION
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• The time evolution of an ideal closed quantum system is governed by the time-dependent 
Schrödinger equation (TDSE)

𝑖ℏ
𝜕
𝜕𝑡

⟩|𝜓(𝑡) = 𝐻 𝑡 ⟩|𝜓(𝑡)

⟩|𝜓(𝑡) =$
"#A

B

𝑐" ⟩|𝑖

§ 𝐻 𝑡 : time-dependent Hamiltonian modeling the quantum system
§ ⟩|𝜓(𝑡)  describes the state of the whole quantum system at time t
§ ⟩|𝑖 : basis states 
§ 𝑐": complex valued coefficients
§ D: Dimension of the Hilbert space



3.2   LINDBLAD MASTER EQUATION
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• Master equation that approximates the time evolution of a density matrix 𝜌(𝑡) of a system 
interacting with an environment

𝑑𝜌(𝑡)
𝑑𝑡 = −𝑖 𝐻, 𝜌 𝑡 +

1
2$

)

𝛾) 2𝐿)𝜌 𝑡 𝐿)
C − 𝐿)

C𝐿)𝜌 𝑡 − 𝜌 𝑡 𝐿)
C𝐿) ≔ ℒ𝜌 𝑡

§ 𝜌:	density matrix
§ 𝐿): dissipation operators
§ 𝛾): dissipation rates

Coherent Dissipative



3.3   BLOCH EQUATIONS
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• For a general 1-spin system, 𝐻 = − $
<
𝑩 ⋅ 𝝈

• Density matrix can be written as 𝜌(𝑡) = $
<
𝐼 + ∑"#$D 𝑆"(𝑡)𝜎"

• Choosing 𝐿$ = 𝜎= = 0 1
0 0 , 𝐿< = 𝜎> = 0 0

1 0 , 𝐿D = 𝜎&

• Lindblad equation reduces to Bloch equations

𝑑
𝑑𝑡

𝑆$(𝑡)
𝑆<(𝑡)
𝑆D(𝑡)

=
0 𝐵& −𝐵E
−𝐵& 0 𝐵.
𝐵E −𝐵. 0

−
1/𝑇< 0 0
0 1/𝑇< 0
0 0 1/𝑇$

𝑆$(𝑡)
𝑆<(𝑡)
𝑆D(𝑡)

+
0
0
𝑀A

where 𝑆0(𝑡) = 𝐓𝐫𝜌 𝑡 𝜎0, 𝑇$ =
$

F'=F(
, 𝑇< =

<
F'=F(=GF)

, 𝑀A =
F'>F(
F'=F(



3.4   MARKOVIAN MASTER EQUATION
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• Lindblad master equation

𝑑𝜌(𝑡)
𝑑𝑡

= −𝑖 𝐻, 𝜌 𝑡 +
1
2
$
)

𝛾) 2𝐿)𝜌 𝑡 𝐿)
C − 𝐿)

C𝐿)𝜌 𝑡 − 𝜌 𝑡 𝐿)
C𝐿) ≔ ℒ𝜌 𝑡

𝐻 𝑡 = 𝐴 𝑡 𝐻+ + 𝐵 𝑡 𝐻,

• Markovian master equation: 6,(I)
6I

= 𝑊𝑃(𝑡)

§ 1-spin: 6
6I

𝑝↑
𝑝↓ =

−𝛾< 𝛾$
𝛾< −𝛾$

𝑝↑
𝑝↓

§ 2-spin: 6
6I

𝑝↑↑
𝑝↑↓
𝑝↓↑
𝑝↓↓

=

−γ$ − γ% − γ& 𝛾G 𝛾K 𝛾$
𝛾L −𝛾G 0 0
𝛾M 0 −	𝛾K 0
𝛾< 0 0 −𝛾$

𝑝↑↑
𝑝↑↓
𝑝↓↑
𝑝↓↓

and 𝜌",) → 0	(𝑖 ≠ 𝑗)
 è 𝐻, 𝜌 𝑡 = 0



IV. NUMERICAL RESULTS



4.1 1-SPIN RESULTS

Page 19

𝐻% = 0.1	𝜎&

Reverse annealing Standard annealing

Bloch equations

[2]  V. Mehta, H. De Raedt, K. Michielsen, F. Jin, 
arXiv:2503.21565v1(2025)

[1]  V. Mehta, H. De Raedt, K. Michielsen, F. Jin, arXiv:2502.08575v1 
(2025)

https://arxiv.org/abs/2502.08575v1


4.2   2-SPIN RESULTS
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Reverse annealing
Standard annealing

	 	 2S1
𝐻, = −𝜎$& −𝜎<& +0.95𝜎$&𝜎<&

• Simulations cannot capture the initial 
dips & bumps

è Need time-dependent dissipation rates

4.2.1 Lindblad master equation

[2]  V. Mehta, H. De Raedt, K. Michielsen, F. Jin, 
arXiv:2503.21565v1(2025)

[1]  V. Mehta, H. De Raedt, K. Michielsen, F. Jin, arXiv:2502.08575v1 
(2025)

https://arxiv.org/abs/2502.08575v1


4.2   2-SPIN RESULTS
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4.2.2   2-spin results: Tackling the dips & bumps

For implementing B(s)

Conjecture: For short annealing times (where non-zero allowed), the h and J ratio 
can no longer be kept constant…

So that instead of 
𝐵 ℎ' + 𝐽',) , we have
𝐵′(ℎ') + 𝐵(𝐽',))?

STANDARD 
ANNEALING

0.5 1

FAST 
ANNEALING

(Non-zero 
𝒉𝒊	not 
allowed)

𝑡!(𝜇𝑠)

(Non-zero 
𝒉𝒊	works fine)

[2]  V. Mehta, H. De Raedt, K. Michielsen, F. Jin, 
arXiv:2503.21565v1(2025)



4.2   2-SPIN RESULTS
4.2.2   2-spin results: Tackling the dips & bumps

Conjecture: For short annealing times (where non-zero allowed), the h 
and J ratio can no longer be kept constant?

STANDARD 
ANNEALING

0.5 1

FAST 
ANNEALING

(Non-zero 
𝒉𝒊	not 
allowed)

𝑡!(𝜇𝑠)

(Non-zero 
𝒉𝒊	works fine)

Idea for B’(s): 1) 𝐵N 𝑡 = 0 for 𝑡 < 𝑡O5P4IPIQ1I

2) 𝐵N 𝑡 = 𝐵(𝑡) sin R
<

I>I,-./0.0120

I,-./0/-3 >I,-./0.0120  for 𝑡O5P4IPIQ1I ≤ 𝑡 ≤ 𝑡O5P4I456

3) 𝐵N 𝑡 = 𝐵(𝑡)  for 𝑡 > 	 𝑡O5P4I456

So instead of 
𝐵 ℎ' + 𝐽',) , we have
𝐵′(ℎ') + 𝐵(𝐽',))?

[2]  V. Mehta, H. De Raedt, K. Michielsen, F. Jin, 
arXiv:2503.21565v1(2025)



	 	 2S1
𝐻, = −𝜎$& −𝜎<& +0.95𝜎$&𝜎<&

	 	 2S2
𝐻, = −𝜎$& −𝜎<& +𝜎$&𝜎<&

	 	 2S3
𝐻, = −0.95𝜎$& −0.95𝜎<& +𝜎$&𝜎<&

4.2   2-SPIN RESULTS
4.2.2   Tackling the dips & bumps: Numerical results with Lindblad master equation

p

[2]  V. Mehta, H. De Raedt, K. Michielsen, F. Jin, 
arXiv:2503.21565v1(2025)



4.2   2-SPIN RESULTS
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4.2.3 Markovian master equation

Reverse annealing

Standard annealing

	 	 2S1
𝐻, = −𝜎$& −𝜎<& +0.95𝜎$&𝜎<&

• B and B’ used to reproduce the dips & 
bumps in forward annealing

• Non-quantum equations can capture the D-
Wave behavior equally well

• Can be used to reproduce the results for 
larger systems

[2]  V. Mehta, H. De Raedt, K. Michielsen, F. Jin, 
arXiv:2503.21565v1(2025)



4.3 FAST ANNEALING
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4.3.1   1-spin
• Comparison of the D-

Wave data with ideal 
quantum annealing 
simulations

• Data matches the 
simulations closely only 
for 𝑡Q = 5 ns

• Beyond that data 
deviates from the 
coherent simulation 
results

[2]  V. Mehta, H. De Raedt, K. Michielsen, F. Jin, 
arXiv:2503.21565v1(2025)



4.3 FAST ANNEALING
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4.3.2   Fast annealing results: 2-spin

	 	 2S1
𝐻, = −𝜎$& −𝜎<& +0.95𝜎$&𝜎<&

	 	 2S2
𝐻, = −𝜎$& −𝜎<& +𝜎$&𝜎<&

• Data deviates from the coherent 
simulations beyond 𝑡Q = 5 ns

• Looking at specific cases can be 
misleading

	 	 2S3
𝐻, = −0.95𝜎$& −0.95𝜎<& +𝜎$&𝜎<&

ppp

[2]  V. Mehta, H. De Raedt, K. Michielsen, F. Jin, 
arXiv:2503.21565v1(2025)



V. CONCLUSION
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• Systematic thermalization: D-Wave results show consistent relaxation towards the 
thermal equilibrium across standard, reverse, and fast annealing protocols as a 
function of annealing time

• Numerical agreement: Bloch (1-spin) and Lindblad/Markovian master equations (2-
spin) reproduce D-Wave data well across all protocols

• Possible implementation artifact: Standard annealing shows unexpected features 
(dips & bumps) at certain annealing times, which can be explained by incorporating 
a physically motivated modification to the annealing schedule

• Coherent effects: Signs of coherence observed but limited to ~5 ns annealing time



ADVANTAGE 2 (PROTOTYPE)
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𝐻% = 0.1	𝜎&
	 	 2S1

𝐻, = −𝜎$& −𝜎<& +0.95𝜎$&𝜎<&
	 	 2S3

𝐻, = −𝜎$& −𝜎<& +1.05𝜎$&𝜎<&



SHIMMING
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D-Wave


