001050648 001__ 1050648
001050648 005__ 20260115135510.0
001050648 0247_ $$2doi$$a10.1016/j.ymeth.2025.08.013
001050648 0247_ $$2ISSN$$a1046-2023
001050648 0247_ $$2ISSN$$a1095-9130
001050648 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-00400
001050648 037__ $$aFZJ-2026-00400
001050648 082__ $$a540
001050648 1001_ $$0P:(DE-HGF)0$$aChu, Ci$$b0
001050648 245__ $$aCapturing G protein-coupled receptors into native lipid-bilayer nanodiscs using new diisobutylene/maleic acid (DIBMA) copolymers
001050648 260__ $$aOrlando, Fla.$$bAcademic Press$$c2025
001050648 3367_ $$2DRIVER$$aarticle
001050648 3367_ $$2DataCite$$aOutput Types/Journal article
001050648 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768481501_13094
001050648 3367_ $$2BibTeX$$aARTICLE
001050648 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001050648 3367_ $$00$$2EndNote$$aJournal Article
001050648 520__ $$aMany membrane proteins, including G protein-coupled receptors (GPCRs), are susceptible to denaturation when extracted from their native membrane by detergents. Therefore, alternative methods have been developed, including amphiphilic copolymers that enable the direct extraction of functional membrane proteins along with their surrounding lipids. Among these amphiphilic copolymers, styrene/maleic acid (SMA) and diisobutylene/maleic acid (DIBMA) polymers have been extensively studied. Despite their many benefits, SMA and DIBMA polymers also have considerable drawbacks limiting their applications. Herein, we describe a series of new amphiphilic copolymers derived from DIBMA via partial amidation of the carboxylate pendant groups with various biocompatible amines. We characterize the new polymer’s nanodisc-forming properties and ability to extract the melanocortin 4 receptor (MC4R), a prototypical class A GPCR. While each new DIBMA variant displays features that may be favorable for selected applications, we identified a PEGylated DIBMA variant called mPEG4-DIBMA as particularly promising. In the tested system mPEG4-DIBMA abolishes unspecific interactions and outperforms other polymers by achieving higher extraction efficiencies of MC4R from Sf9 insect cell membranes. The new nanodisc-forming polymer combines two key advantages that are crucial for investigating GPCRs in a well-defined but still native lipid-bilayer environment, thus paving the way for manifold future applications.
001050648 536__ $$0G:(DE-HGF)POF4-5352$$a5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001050648 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x1
001050648 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001050648 7001_ $$0P:(DE-HGF)0$$aVargas, Carolyn$$b1
001050648 7001_ $$0P:(DE-HGF)0$$aBarbosa, Maria Carolina$$b2
001050648 7001_ $$0P:(DE-Juel1)186754$$aSommerhage, Simon$$b3$$ufzj
001050648 7001_ $$0P:(DE-HGF)0$$aRechberger, Gerald N.$$b4
001050648 7001_ $$0P:(DE-HGF)0$$aPahovnik, David$$b5
001050648 7001_ $$0P:(DE-HGF)0$$aŽagar, Ema$$b6
001050648 7001_ $$0P:(DE-Juel1)132018$$aSchröder, Gunnar F.$$b7$$ufzj
001050648 7001_ $$0P:(DE-HGF)0$$aKeller, Sandro$$b8$$eCorresponding author
001050648 7001_ $$0P:(DE-Juel1)156341$$aEtzkorn, Manuel$$b9$$eCorresponding author
001050648 773__ $$0PERI:(DE-600)1471152-7$$a10.1016/j.ymeth.2025.08.013$$gVol. 244, p. 55 - 64$$p55 - 64$$tMethods$$v244$$x1046-2023$$y2025
001050648 8564_ $$uhttps://juser.fz-juelich.de/record/1050648/files/Capturing%20G%20protein-coupled%20receptors.pdf$$yOpenAccess
001050648 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186754$$aForschungszentrum Jülich$$b3$$kFZJ
001050648 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132018$$aForschungszentrum Jülich$$b7$$kFZJ
001050648 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156341$$aForschungszentrum Jülich$$b9$$kFZJ
001050648 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5352$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001050648 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
001050648 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
001050648 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-11
001050648 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-11
001050648 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-11
001050648 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-11
001050648 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMETHODS : 2022$$d2024-12-11
001050648 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-11
001050648 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-11
001050648 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
001050648 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-11
001050648 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001050648 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-11
001050648 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
001050648 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001050648 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-11$$wger
001050648 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
001050648 920__ $$lyes
001050648 9201_ $$0I:(DE-Juel1)ER-C-3-20170113$$kER-C-3$$lStrukturbiologie$$x0
001050648 980__ $$ajournal
001050648 980__ $$aVDB
001050648 980__ $$aUNRESTRICTED
001050648 980__ $$aI:(DE-Juel1)ER-C-3-20170113
001050648 9801_ $$aFullTexts