001     1050650
005     20260115203948.0
024 7 _ |a 10.1038/s41592-025-02818-9
|2 doi
024 7 _ |a 1548-7091
|2 ISSN
024 7 _ |a 1548-7105
|2 ISSN
037 _ _ |a FZJ-2026-00402
082 _ _ |a 610
100 1 _ |a Sachse, Carsten
|0 P:(DE-Juel1)173949
|b 0
|e Corresponding author
245 _ _ |a Cryogenic STEM of thick biological specimens
260 _ _ |a London [u.a.]
|c 2025
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1768473917_18321
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A cryogenic scanning transmission electron microscopy (STEM) approach for analyzing thick biological specimens expands the reach of cryo-electron microscopy.In the past decade, structure determination and visualization of biological macromolecules by cryogenic electron microscopy (cryo-EM) has become one of the most popular tools in structural biology1. The power of cryo-EM has relied on the capabilities of transmission electron microscopy (TEM), which involves image formation in the microscope through electromagnetic lenses followed by comprehensive single-particle image processing. A few thousand well-defined particles can be sufficient to generate a resolution allowing reliable atomic model building. Despite the power of the established cryo-TEM approach, biological specimens can be too small, too heterogeneous or too thick and thus fall short of the commonly achieved resolutions. Moreover, determining biological structures at this resolution within the native cellular environment has only been possible in thin focused ion beam milled sections of approximately 100 nm thickness for very large and abundant macromolecular complexes such as the ribosome. In this issue, Yu et al.2 propose an alternative approach for imaging thick specimens that is based on cryogenic scanning transmission electron microscopy (STEM) followed by image processing, a method they call tilt-corrected bright-field STEM (tcBF-STEM).
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
536 _ _ |a 5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)
|0 G:(DE-HGF)POF4-5352
|c POF4-535
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
773 _ _ |a 10.1038/s41592-025-02818-9
|g Vol. 22, no. 10, p. 2015 - 2016
|0 PERI:(DE-600)2163081-1
|n 10
|p 2015 - 2016
|t Nature methods
|v 22
|y 2025
|x 1548-7091
856 4 _ |u https://juser.fz-juelich.de/record/1050650/files/Cryogenic%20STEM%20of%20thick%20specimens.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1050650
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173949
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5352
|x 1
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-07
|w ger
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2025-01-07
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT METHODS : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-07
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a IF >= 40
|0 StatID:(DE-HGF)9940
|2 StatID
|b NAT METHODS : 2022
|d 2025-01-07
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-3-20170113
|k ER-C-3
|l Strukturbiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-3-20170113
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21