001050689 001__ 1050689
001050689 005__ 20260115203949.0
001050689 0247_ $$2doi$$a10.1002/lno.70196
001050689 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-00440
001050689 037__ $$aFZJ-2026-00440
001050689 041__ $$aEnglish
001050689 082__ $$a333.7
001050689 1001_ $$0P:(DE-HGF)0$$aDavidson, Chen$$b0
001050689 245__ $$aSources of marine carbonyl sulfide and its precursors traced by sulfur isotopes
001050689 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2025
001050689 3367_ $$2DRIVER$$aarticle
001050689 3367_ $$2DataCite$$aOutput Types/Journal article
001050689 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768480774_13097
001050689 3367_ $$2BibTeX$$aARTICLE
001050689 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001050689 3367_ $$00$$2EndNote$$aJournal Article
001050689 520__ $$aCarbonyl sulfide (OCS) is a major precursor of stratospheric sulfate aerosols and a proxy for terrestrial photosynthesis. In recent years, sulfur-isotope measurements (δ34S) of OCS emerged as an approach to constrain the OCS budget. Yet, such measurements are still scarce for aquatic OCS. Here we present a large dataset of δ34S values of marine OCS. In addition, we present δ34S values of marine carbon disulfide (CS2) and dimethyl sulfide (DMS), which in the air, act as important precursors of tropospheric OCS. Samples were collected at the Atlantic Ocean, the Red Sea, the Mediterranean Sea, the Wadden Sea, and the North Sea. The gases were sampled by a water–air equilibrator, preserved in canisters, and analyzed via a preconcentration system coupled to a gas chromatograph connected to a multi-collector inductively coupled plasma mass spectrometer. We found δ34S values of −3.8‰ to 19.4‰ for OCS, −10.5‰ to 20‰ for CS2, and 14–23‰ for DMS. These δ34S values are controlled mainly by two endmembers: production in the water column and production in sediments. Lab experiments suggest that the 34S-fractionation of OCS photo-production is 0.8‰ ± 0.5‰. In addition, based on measurements from the Atlantic Ocean, we calculated the 34S-fractionation of OCS dark-production as −6‰ ± 2‰. This new data significantly improves our knowledge of the sulfur isotope distribution of marine OCS and helps identify its different sources, sinks, and production pathways.
001050689 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
001050689 65027 $$0V:(DE-MLZ)SciArea-140$$2V:(DE-HGF)$$aGeosciences$$x0
001050689 7001_ $$0P:(DE-HGF)0$$aAngert, Alon$$b1$$eCorresponding author
001050689 7001_ $$0P:(DE-HGF)0$$aAvidani, Yasmin$$b2
001050689 7001_ $$0P:(DE-HGF)0$$aLennartz, Sinikka T.$$b3
001050689 7001_ $$0P:(DE-Juel1)129170$$aHobe, Marc von$$b4$$ufzj
001050689 7001_ $$0P:(DE-HGF)0$$aAmrani, Alon$$b5$$eCorresponding author
001050689 773__ $$0PERI:(DE-600)2033191-5$$a10.1002/lno.70196$$n11$$p3172-3185$$tLimnology and oceanography$$v70$$x0024-3590$$y2025
001050689 8564_ $$uhttps://juser.fz-juelich.de/record/1050689/files/Limnology%20Oceanography%20-%202025%20-%20Davidson%20-%20Sources%20of%20marine%20carbonyl%20sulfide%20and%20its%20precursors%20traced%20by%20sulfur.pdf$$yOpenAccess
001050689 909CO $$ooai:juser.fz-juelich.de:1050689$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001050689 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129170$$aForschungszentrum Jülich$$b4$$kFZJ
001050689 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
001050689 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-19
001050689 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-19
001050689 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-19
001050689 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-19
001050689 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-19
001050689 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-19
001050689 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2024-12-19
001050689 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-19$$wger
001050689 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-19
001050689 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-19
001050689 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001050689 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-19
001050689 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-19$$wger
001050689 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-19
001050689 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001050689 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-19
001050689 920__ $$lno
001050689 9201_ $$0I:(DE-Juel1)ICE-4-20101013$$kICE-4$$lStratosphäre$$x0
001050689 980__ $$ajournal
001050689 980__ $$aVDB
001050689 980__ $$aUNRESTRICTED
001050689 980__ $$aI:(DE-Juel1)ICE-4-20101013
001050689 9801_ $$aFullTexts