001     1050689
005     20260115203949.0
024 7 _ |a 10.1002/lno.70196
|2 doi
024 7 _ |a 10.34734/FZJ-2026-00440
|2 datacite_doi
037 _ _ |a FZJ-2026-00440
041 _ _ |a English
082 _ _ |a 333.7
100 1 _ |a Davidson, Chen
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Sources of marine carbonyl sulfide and its precursors traced by sulfur isotopes
260 _ _ |a Oxford [u.a.]
|c 2025
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1768480774_13097
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Carbonyl sulfide (OCS) is a major precursor of stratospheric sulfate aerosols and a proxy for terrestrial photosynthesis. In recent years, sulfur-isotope measurements (δ34S) of OCS emerged as an approach to constrain the OCS budget. Yet, such measurements are still scarce for aquatic OCS. Here we present a large dataset of δ34S values of marine OCS. In addition, we present δ34S values of marine carbon disulfide (CS2) and dimethyl sulfide (DMS), which in the air, act as important precursors of tropospheric OCS. Samples were collected at the Atlantic Ocean, the Red Sea, the Mediterranean Sea, the Wadden Sea, and the North Sea. The gases were sampled by a water–air equilibrator, preserved in canisters, and analyzed via a preconcentration system coupled to a gas chromatograph connected to a multi-collector inductively coupled plasma mass spectrometer. We found δ34S values of −3.8‰ to 19.4‰ for OCS, −10.5‰ to 20‰ for CS2, and 14–23‰ for DMS. These δ34S values are controlled mainly by two endmembers: production in the water column and production in sediments. Lab experiments suggest that the 34S-fractionation of OCS photo-production is 0.8‰ ± 0.5‰. In addition, based on measurements from the Atlantic Ocean, we calculated the 34S-fractionation of OCS dark-production as −6‰ ± 2‰. This new data significantly improves our knowledge of the sulfur isotope distribution of marine OCS and helps identify its different sources, sinks, and production pathways.
536 _ _ |a 2112 - Climate Feedbacks (POF4-211)
|0 G:(DE-HGF)POF4-2112
|c POF4-211
|f POF IV
|x 0
650 2 7 |a Geosciences
|0 V:(DE-MLZ)SciArea-140
|2 V:(DE-HGF)
|x 0
700 1 _ |a Angert, Alon
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Avidani, Yasmin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lennartz, Sinikka T.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hobe, Marc von
|0 P:(DE-Juel1)129170
|b 4
|u fzj
700 1 _ |a Amrani, Alon
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1002/lno.70196
|0 PERI:(DE-600)2033191-5
|n 11
|p 3172-3185
|t Limnology and oceanography
|v 70
|y 2025
|x 0024-3590
856 4 _ |u https://juser.fz-juelich.de/record/1050689/files/Limnology%20Oceanography%20-%202025%20-%20Davidson%20-%20Sources%20of%20marine%20carbonyl%20sulfide%20and%20its%20precursors%20traced%20by%20sulfur.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1050689
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129170
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2112
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2024-12-19
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-19
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-19
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-19
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-19
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-19
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-19
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)ICE-4-20101013
|k ICE-4
|l Stratosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICE-4-20101013
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21