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Abstract

A model for NMDA-receptor-mediated synaptic currents in leaky integrate-and-fire neurons, first proposed by Wang (J
Neurosci, 1999), has been widely studied in computational neuroscience. The model features a fast rise in the NMDA
conductance upon spikes in a pre-synaptic neuron followed by a slow decay. In a general implementation of this model
which allows for arbitrary network connectivity and delay distributions, the summed NMDA current from all neurons in
a pre-synaptic population cannot be simulated in aggregated form. Simulating each synapse separately is prohibitively
slow for all but small networks, which has largely limited the use of the model to fully connected networks with identical
delays, for which an efficient simulation scheme exists. We propose an approximation to the original model that can be
efficiently simulated for arbitrary network connectivity and delay distributions. Our results demonstrate that the approxi-
mation incurs minimal error and preserves network dynamics. We further use the approximate model to explore binary

decision making in sparsely coupled networks.

1 Introduction

A model for a leaky integrate-and-fire neuron with NMDA-
receptor-mediated synaptic currents generating persistent
activity proposed by Wang and Brunel (Wang, 1999; Brunel
& Wang, 2001; Wang, 2002), based on earlier kinetic model-
ing work by Destexhe et al. (1994), has been widely adopted
in computational neuroscience, both for spiking-neuron and
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mean-field models (Wong & Wang, 2006; Deco & Jirsa,
2012). The model features a two-dimensional nonlinear
system of ordinary differential equations for the presynaptic
gating variable S;(t). Due to the nonlinearity of the sys-
tem, the synaptic current in a postsynaptic neuron cannot
be simulated in aggregated form. In a general implementa-
tion of the model, all synapses must be simulated explicitly,
which is prohibitively expensive for all but small networks.
In the specific case of a fully connected network with iden-
tical delays, the sum over all presynaptic gating variables
is identical for all neurons and can be simulated globally
instead of individually for each neuron. The original model
is, therefore, mainly of use in the case of fully connected
networks with identical delay.

Noting that the presynaptic gating variable S;(¢) only
depends on the spike history of the presynaptic neuron, we
show that the NMDA dynamics can be approximated by an
exponential decay between spikes and a history-dependent
jump upon spikes. This form allows the summed gating
variables in postsynaptic neurons to be reduced to a single
variable, which can be efficiently simulated regardless of
network connectivity or delay distribution. In the present
work, we derive the approximate model and empirically
characterize the error by comparing the original model
and the approximation in neurons receiving identical input
spikes. We show that errors in the synaptic currents vanish
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rapidly and that the effect on the membrane potential is
small. Furthermore, we reproduce the binary decision-mak-
ing network studied by Wang (2002) and Wong and Wang
(2006) with both the approximate model and the original
model. We find that the model dynamics are well-preserved
in the approximation. Benchmarks show a significant
speedup for the approximate model compared to a general
implementation of the original model designed for arbitrary
connectivity and delay distributions. Leveraging the flexi-
bility and enhanced performance of the approximate model,
we explore the dynamics of a sparsely connected binary
decision-making network. A reference implementation of
our approximate model is made available in the NEST sim-
ulator (Graber et al., 2024) as model iaf bw_2001.

2 Methods

In this section, we first describe the original model, followed
by the derivation of the approximate model. We then present
the network models used in this paper and our benchmark-
ing setup.

2.1 Description of the original model

The original model (Brunel & Wang, 2001) is a conduc-
tance-based leaky integrate-and-fire neuron with a synaptic
NMDA current given by

Invpa(t) =
gnmpa X (V (1) —VE)
T+ [Mg2F|exp(—0.062V (t))/3.57 (N

x 221 w;iSiNMDA (1)

dS;j Nnmpa (t)

dt
2

TNNIDA ,decay

dx;(t)
T +2.0(t- 3

TNMDA rise

where TNMDA ,decays TNMDA,rise and « are model param-
eters, and t? are the spike times of neuron j. See Table 1

for the complete model equations and Table 2 for parameter
values.

2.2 Simplified NMDA gating dynamics

We will focus solely on the NMDA gating variables S; ()
and z(t). For simplicity, we use the shorthand notation 7,
and 74 to represent TNMDA,rise aNd TNMDA,decay, I'€SPEC-
tively. Assuming that neuron j last spiked at time zero and
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does not spike again until time ¢, the solution to Eq. (3) is
given by

x;(t) = zjexp (—t> ; (4)

where x? is the value immediately after the spike. By substi-

tuting the solution for x; into Eq. (2), we obtain the follow-
ing expression for the time evolution of .S; until #:

das; 1 t t
g + (Td +a1: Jexp [ TJ) S; = ax! exp {—Z] 5)

We obtain the formal solution by applying an integrating
factor as follows:

Si(t) =exp |-L —aaln (1 —exp |—L
{ (S?—l—axjoJ(( t)) [ ])} (©)

where 29 and S are the initial conditions. J(?) is the integral

t tl t/
J(t) = / exp [~ + azir (1 — exp [—})] dt’
0 T Ty

where 7 = (1/7q4 — 1/7:) L. This integral does not have a
closed-form solution.
We seek an approximation of the form

8,(0) = Spowrp (- ) @
Td

where Spost is the—as yet unknown—initial value of the

function immediately after spiking. We further assume that

x; has decayed to 0 before neuron j fires its next spike,

so that x; jumps to 33? =1 as the next spike is fired. We

determine Spos¢ as a function of the value of S J (t) immedi-

ately before spiking, by requiring that the approximation is
asymptotically equal to the true solution, i.e.,

S;(t)

lim —~>=1
t—o0 Sj(t) (8)

By substituting Egs. (6) and (7) into Eq. (8), we find that

Spost = lim;_yoc €Xp [—cwr (1 — exp [—TL} )]

x (89 4+ aJ (1)) @)

J(t) = /Ot exp {i + ot (1 — exp [—f})} dt’ (10)
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Table 1 Description of decision-making network following the guidelines of Nordlie et al. (2009)
A Model summary
Populations  Three excitatory, one inhibitory, three external
Network Fully connected
model
Neuron Local populations: leaky integrate-and-fire, external:
model Poisson generator
Synapse Conductance-based, with fixed strength for each pair
model of populations
B Populations
Name Symbol Size
Selective A o Na = fNg
Selective B Ep Ni = fNg
Nonselective Ex Ny = (1 - 2f)Ng
Inhibitory 1 Ny
C Connectivity
Source Target Weight Delay Receptors Connec-
tion rule
o o wy ta AMPA,NMDA Fully
connected
Jor o wy ty AMPANMDA Fully
connected
Ea. Ex o w. by AMPA,NMDA Fully
connected
Ep. Ex Ex w. ty AMPA,NMDA  Fully
connected
Ea, Eg,Ex Ex, I 1 ta AMPANMDA Fully
connected
1 Ea, Eg, Ex, I 1 ta GABA Fully
connected
D Neuron model
Type Leaky integrate-and-fire neuron
Description  Dynamics of membrane potential V;(t) (neuron
i€ [1,N]):
- Spike emission at times ¢! with V;(t}) > Vi,
- Subthreshold dynamics:
Cou e = g (Vi — BL) — Li(t)  VI: t ¢ (8,8 + teet] (15)
where Cly, is the membrane capacitance, V; the mem-
brane potential, gm the membrane conductance, and
I;(t) the synaptic inputs.
- Reset + refractoriness: Vi (t) = Vreset
VIt e (t],t) + tref]
Solved with RKF45 with adaptive step size, where
spikes are checked at intervals of dt.
Membrane potential is initialized as V; = Ey, att = 0.
E Synapse model
Type Conductance-based currents
Description 7 (¢) = Ianpa (t) + Invpa (t) + Icapa (t),
Ng
Iampa(t) = gampa X (V(t) = Ve) X 3 w;S; ampa(t),
j=1
(V()—Vg) W
X —VE
Inmpa(t) = 1+[Mgﬁlv]le?(?,(fo.oew(f))/3457 x

w;S;,NMDA (t),
j=1
Ng
IgaBa(t) = gaaBa X (V(t) = Vi) x > w;S;caBa(t)
j=1
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Table 1 (continued)

dS; AMPA S; AMPA k
g — _ P4 __ 4K

dt T TAMPA + zk: 4 (t tj )
dS; GABA _ _ S;GABA k

dt T TGABA Jr;é(t*tj)
dS; NMDA _ S;j,NMDA ) )

dt . - TNMDA decay +azj (1 - SjNupa)

T _

. — TNMDA rise Z 4 (t - tk)

} Exact model

ds; S
LA = — TNI\Z;;;W?:W Z 4 ( ) (ko + k1.5, NMDA)} Approximation

F Signals

Name Target Description
Constant rate Poisson genera-

P Ea,Eg,En, I . .

0 A B, BN tor with rate vext and weight 1.
Active fromt =0tot =1T.

P IoN Poisson generator with rates
sampled from N (p1,4) every
50ms and weight 1. Active from
t = 1000 ms to ¢ = 3000 ms.

Py joR Poisson generator with rates

sampled from N (u2,4) every
50ms and weight 1. Active from
t = 1000 ms to t = 3000 ms.

+/

Substituting u = a7.e” 7, the integral J(t) can be
expressed in the limit as

~ 1 Tr QTr Tr
lim J(t) = —e*™ (7)™ / u Tde “du
t—o00 « 0

1 e T,
= —er (O‘Tr) Tary [1 - ?;a 047—7‘} s

«

where + is the lower incomplete gamma function (DLMF,
2024, Eq. 8.2.1). Thus, Eq. (9) can be evaluated as

™ T
+ (o) 7ay[1 -

Spost = eiaTrS;‘) ) OU—?"] (1D
We define two constants
o T

ko = (ary)7a [1 - ,om} (12)
Td

ki =e o, (13)

which depend solely on the synaptic parameters. For a pre-
synaptic neuron j, let  be the time of the previous spike
and ¢~ the time immediately before the next spike. Then,
according to the definition of our approximation, we have

2
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The value of S; at ™, immediately after the spike, is then
given by

Sj (t+) = Spost =ko+ k'lSJ (t_) .

In a postsynaptic neuron, the sum over all presynaptic S; is
aggregated in a single variable. Therefore, the change in S
upon the spike, rather than its value immediately after the spike,
must be transmitted to the postsynaptic neuron to update the
aggregated variable. The change in S; upon the spike at time ¢ is

— 85 (t7)
Si(t7) =S (¢7)
Si(t7).

A%, =, (1)
=ko+ kll
=ko + k1

with k; = k] — 1. The change AS; can then be transmitted
to all postsynaptic neurons and added to their aggregated S
input variable. The aggregated NMDA gating variable in a
postsynaptic neuron can be simulated using the following
differential equation

s S
i +;A5,-(t)5

(t=15) - (14)

Reference implementations of both the approximate model
and the original model can be found in the NEST simula-
tor under the model names iaf bw 2001 and iaf bw 2001
exact, respectively.
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Table 2 Parameters for decision-making network from Wang (2002)

Symbol Description

Neuron parameters
Excitatory Inhibi-
neurons tory
neurons

C Membrane capacitance 500 pF 250 pF
fro Absolute refractory period 2 ms 1 ms
Vi Firing threshold —-50mV ~ —50mV
Vieset Reset membrane potential —55mV  —55mV
o Passive leak reversal potential —70mV —70mV
a NMDA gating variable gain 0.5ms? 05
factor ms™!
[Mg?t] Magnesium ion concentration 1.0 mM 1.0 mM
AMPA synaptic time constant 2 ms 2 ms
TAMPA .
GABA synaptic time constant 2 ms 2 ms
TGABA L
TNMDA r NMDA synaptic rise time 2 ms 2 ms
constant
TNMDA.d NMDA synaptic decay time 100 ms 100 ms
constant
an Leak conductance 25nS 20 nS
AMPA conductance 0.05nS 0.04 nS
GAMPA
GABA conductance 1.3nS 1.0 nS
9GABA
NMDA conductance 0.165nS  0.13nS
gNMDA,
Population parameters
N, Total number of excitatory 1600
B neurons
N Total number of inhibitory 400
d neurons
f Fraction of each selective 0.15
population
Connection parameters
ta Synaptic delay period 0.5 ms
wa Potentiated w§ight 1.7
w_ Depressed weight 1— f(wy — 1)(1— f)

Signal parameters

Vet External input rate 2400 sp/s
10 Base signal rate to selective 40 sp/s
populations
Coherence scaling factor selec- 0.4
PA .
tive pop. A
Coherence scaling factor selec- 0.4
PB .
tive pop. B
Simulation parameters
T Simulation duration 4000 ms
dt Time resolution 0.1 ms

2.3 Network models

Here we describe the network model used to validate
the approximation and for exploring decision-making in
sparsely connected networks respectively, as well as our
benchmarking setup.

2.3.1 Decision-making network

To validate the approximation in a practical use case, we rep-
licate the decision-making network model originally studied
by Wang (2002). This network consists of three excitatory
populations and one inhibitory population, all of which are
recurrently connected. An external population, modeled as
a Poisson process, projects equally onto all recurrent neu-
rons. The selective populations E4 and Fp each comprise
a fraction f of the total number of excitatory neurons, while
the nonselective population EN comprises the remaining
fraction 1 — 2 f of excitatory neurons. The selective popula-
tions receive a transient stimulus in the form of spikes onto
AMPA synapses from an additional Poisson process. The
relative strength of the transient stimulus received by the
selective populations is determined by the input coherence
¢’ of the signal. The rate of the transient stimulus is given
by ua = po + pac, us = po — pec’. In this study, we con-
sider the case where po = 40 sp/s, and pa = pB = $55-

A concise description of the model is provided in Table 1,
and the parameter values used are listed in Table 2.

2.3.2 Sparse decision-making network

To investigate the dynamics of a sparsely connected deci-
sion-making network, we change the connectivity rule to
random fixed in-degree exy Nx without multapses (Senk
et al., 2022). Here, exy denotes the connection probability
from presynaptic population X onto postsynaptic population
Y, and Nx denotes the size of presynaptic population X.
When exy = 1 for all X and Y, the fully connected network
is recovered.

For the first two seconds of the simulations, all outgo-
ing NMDA connections from the selective populations
are replaced by a constant “Snypa-current” with value
NA€AX7«UAX9NMDA/7'NMDA, which is added to the right-
hand side of Eq. 14 for all populations. Here, eax is the
connection probability from presynaptic selective popu-
lation A onto postsynaptic population X, and wax is the
corresponding synaptic weight. This drives the aggregated
SnMDA -Value in the postsynaptic neurons towards the value
it would take if all S; nvpa-values in selective population
A were 1, and the corresponding values for selective pop-
ulation B were 0, effectively clamping them. After 2 sec-
onds, the NMDA connections are restored and the “Sxvpa
-current” is removed. If the given connectivity admits an
asymmetric state, i.e., a state where one of the selective
populations has higher activity than the other, the network
will relax into it.

By varying the values of the connection probabili-
ties within the network, we can determine the values that
support decision-making dynamics. Simulations were
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run with exy = 0.2 for all pairs of populations except
eaa = epp (internal connectivity within each selective
population) and e;5 = erp (inhibitory-selective connectiv-
ity). These two connectivity values were systematically var-
ied across 33 evenly spaced points in the interval [0.2, 1.0]
for each pair.

2.3.3 Benchmarking setup

We use the fully-connected decision-making network to
measure simulation times, but with f = 0. This results in
a network with one excitatory and one inhibitory popula-
tion and steady-state activity. We scale the network size
from 1.28 times to 10.24 times the size of the original
network in powers of 2. These network sizes, comprising
from 2560 to 20480 neurons, were chosen to be evenly
divisible across up to 128 parallel threads. Due to the
all-to-all connectivity and the pairing of AMPA and
NMDA synapses, this results in a network of about 755
million synapses for the largest network size. Synaptic
conductances for all recurrent connections were scaled
inversely with network size to approximately maintain
network dynamics.

We benchmark four different implementations of this
model: Using NEST and our approximation (iaf bw_2001),
using NEST and the original model (iaf bw 2001 exact)
as well as two implementations in Brian2 as external refer-
ences. The first of these is a restricted implementation that
only supports fully connected networks with equal delays
(Wimmer & Stimberg, 2023), while the other allows arbi-
trary connectivity; it is inspired by Moreni et al. (2025).
Neuron models in NEST used an adaptive Runge-Kutta-
Fehlberg-45 numerical solver, which has a slightly higher
computational cost than the Runge-Kutta-4 numerical
solver used in the Brian2 simulations.

Benchmark results reported here were obtained with
NEST 3.8 (Graber et al., 2024) on the JURECA supercom-
puter at the Jiillich Supercomputing Center equipped with
AMD EPYC 7742 CPUs providing 128 compute cores.
Simulations were performed using 8 and 128 threads. Eight
threads are the minimum required to simulate the largest
network size with NEST.

3 Results

We assess the accuracy of the approximate model using two
approaches. First, we examine the differences in NMDA
current and membrane potential between neurons with exact
and approximate NMDA dynamics when they receive syn-
aptic activations from a Poisson process at different rates.
Second, we reproduce the binary decision-making network

@ Springer

studied by Wang (2002) and Wong and Wang (2006) using
both the exact and approximate models to compare the
dynamics of each network. Furthermore, leveraging the
flexibility and improved performance offered by the approx-
imation, we explore the dynamics of the binary decision-
making network with sparse connectivity.

3.1 Errorsin NMDA-receptor-mediated currents and
membrane potential

While the original model has a finite rise time in the
NMDA gating variable, characterized by the time constant
TNMDA,r» the approximate model introduces an instanta-
neous jump. Immediately after any given spike, the error
in the gating variable of the approximation will then be
ko + k1So, where Sy is the value of the gating variable
immediately before the spike. In a postsynaptic neuron,
the effect on the synaptic current due to NMDA receptors
will be through the coupling described by Eq. (1), and the
error of the synaptic current will also rise instantaneously.
The errors of the membrane potential are filtered through
Eq. (15) and will increase at a finite rate. Due to the instanta-
neous jump in the NMDA gating variable caused by a spike,
the postsynaptic current will be higher in the approximate
model compared to the exact model. As the gating variable
of the exact model increases, the error rapidly decreases on
the time scale of TnmDa ». Figure 1 shows an example of
Invpa and Vi, for both the exact and approximate models
in a simulation where they receive identical input at 20 sp/s.
For the synaptic currents, the error jumps instantaneously
and decays on a short time scale. The error in membrane
potential rises on a short time scale and decays over a longer
time scale.

Because the error of the approximate NMDA gating vari-
able from a single spike decreases rapidly and its differen-
tial equation is linear, the errors do not accumulate over
time but instead depend only on the number of spikes in
the immediate past. If the neuron receives sufficiently high
input to reach the threshold, the small differences between
the exact model and the approximate model will result in
small changes to the exact timing of spike events. These
errors in spike times accumulate, and in such cases, the dif-
ferences between simulations of the exact model and the
approximate model receiving identical input become more
pronounced.

Figure 2 shows the root mean square difference (RMS)
between membrane potentials from simulations of the exact
model and the approximate model. Both models receive
identical inputs from a presynaptic population with Pois-
son spikes, with variations in presynaptic population size,
presynaptic firing rate, and synaptic connection weights. As
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Fig. 1 NMDA-receptor-mediated synaptic currents and membrane
potential. For both the exact model (dashed orange lines) and the
approximate model (solid blue lines), a postsynaptic neuron receives
identical input spikes. The resulting NMDA receptor-mediated syn-
aptic currents and the error INMDA exact — INMDA ,approximate 1S

shown in the top half, while the membrane potential and correspond-
ing error is shown in the bottom half. The red dots indicate the spike
arrival times. The plots on the right side shows the same data as on the
left, but zoomed in to provide a clearer view of the effect of individual
spikes

’% i _/. . ° e 1:5
e L - §

L i~
é N f\/«‘ A N /\ x : |
e SINP TR | By

Total input

Fig. 2 RMS of difference in voltage traces. The root mean square
(RMS) of the difference between the voltage traces of the exact and
approximate models in a simulation where a postsynaptic neuron
receives NMDA currents from a presynaptic population of Poisson
neurons. The color of the dots indicates the synaptic connection weight
(w), ranging from 0.1 to 100. The size of each dot is proportional to

the square root of the presynaptic population size npre, varying from
1 to 3200. The total input is calculated as npreVprew, Where vpre is
the presynaptic firing rate. The three insets show the time series of the
membrane potential of the exact model (orange) and the approxima-
tion (blue) in simulations where the neuron respectively exhibits high,
low, and no spiking activity
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the total input—determined by the product of the number
of presynaptic neurons, their firing rate, and the synaptic
connection weight—increases, the RMS difference remains
minimal until the postsynaptic neuron begins to fire. Once
the postsynaptic neuron fires, the difference in membrane
potential between the exact model and the approximate
model increases rapidly due to the differences in spike
times. The NMDA gating variable in the approximate model
is higher than in the exact model, causing the approximate
model to spike slightly earlier when given identical input.

3.2 Reproducing the Wang (2002) binary decision-
making network

In the binary decision-making network studied by Wang
(2002) and Wong and Wang (2006), described in Sec-
tion 2.3.1, NMDA receptor-mediated synaptic currents are
crucial for enabling the network to sustain high activity
within the selective populations. During the period when
the selective populations receive a transient stimulus, the
network transitions into an asymmetric state, characterized
by high activity in one of the selective populations and low

Exact model
Selective pop. A

Selective pop. B

o un

Firing rate [sp/s]
N

o wu

Firing rate [sp/s]
N

o
]

1
0 1000 2000 3000 4000 O
Time [ms]

Firing rate [sp/s]
N
u
1

Time [ms]

Fig. 3 Comparison of the exact and approximate models in binary
decision-making network dynamics. Simulations of a binary decision-
making network using both the exact and the approximate models for
three different coherence levels. The network connectivity, external
inputs, and stimuli are identical across both models. Each panel shows
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1000 2000 3000 4000

activity in the other. After the transient stimulus period, the
network may either maintain the asymmetric state or, with a
certain probability, revert to a state where both populations
have equal activity.

Figure 3 compares the dynamics of the binary decision-
making network when modeled using the exact and approx-
imate models. The figure shows three example simulations
of the network at different coherence levels, similar to Fig-
ure 2 in Wang (2002). The network dynamics are qualita-
tively similar for both the exact and approximate models;
however, for the approximate model, the selective popula-
tion with higher activity shows slightly increased activity.
This is due to the marginally higher values of the NMDA
gating variable in the approximate model. At coherence
level ¢/ =0, both selective populations have an equal
probability of transitioning into the high activity state. As
coherence increases, the stimulus to selective population A
also increases, thereby increasing the probability that the
network will transition into a state where population A has
the higher activity. By performing multiple simulations at
different coherence levels, the probability of making the
correct choice—which is defined as selecting population A

Approximate model
Selective pop. A
c=51.2

Selective pop. B
c=51.2
D ;_:.-'w W“‘ T

c=12.8

1
0 1000 2000 3000 4000 O
Time [ms]

1000 2000 3000 4000
Time [ms]

a spike raster of 100 neurons from selective populations A and B at the
top, and the population activity, measured by averaging the summed
population spiking histogram over 50 ms time bins, at the bottom. The
vertical lines indicate the start and end of the transient stimulus
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100 Table 3 Simulation times for the largest network size
L. 90 / NEST Brian2
§ 80 - Exact Approximation  Approx Unrestricted Restricted
= (8 x 16)
9 70 /
< 57659.4s  29.2s 22s 7610.1 s 10.1s
60 / Data are shown for all four implementation for eight threads and for
50 4 —rrr — et the approximation in NEST also for 8 MPI processes with 16 threads
100 10! 102 each. These are the same data as the rightmost data points in Fig. 5
Coherence

Fig.4 Decision-making accuracy. The probability of the network mak-
ing the correct decision—defined as selective population A maintain-
ing higher activity after the stimulus is turned off—as a function of the
coherence level, ¢’. For each coherence level ¢’ € {1, 5,10, 20,40},
the probability is calculated by performing 400 simulations for both
the exact (orange dots) and the approximate (blue dots) models and
determining the proportion of simulations where population A wins.
The data points are slightly offset along the x-axis for clarity, although
they are all simulated with the same coherence level value. A 90%
confidence interval, estimated by bootstrapping, is represented by the
error bars. The black line shows the Weibull function fitted by Wang
(2002) for the same experimental setup

100000 3
10000 4
= E
] .
g 1000 ]
5 1003
=] E
© 1
=} -
g 103
7] ]
14
0.1

T T T
5120 10240 20480

Network size

T
2560

Fig. 5 Network simulation time for different model implementations
and network sizes. Solid lines show the time required to simulate 1 s
model time for the exact implementation (dark brown) and approxi-
mation (light brown) in NEST, and the unrestricted (dark blue) and
restricted (light blue) implementations in Brian2, all simulated on
eight threads. The dashed light brown line shows the NEST approxi-
mation for 8 MPI processes with 16 threads each. The dash-dotted grey
line marks a quadratic, the dotted grey line a linear increase in simula-
tion time with network size. Data are from a single simulation per data
point. As the data are very clear, evolve systematically with size and
the different implementations differ by factors, we prioritized energy
conservation rather than collecting statistics.

for ¢’ > 0 because it receives a stronger stimulus—can be
determined as a function of the coherence level.

Figure 4 shows the probability of making a correct choice
at different levels of coherence after 2 seconds of stimula-
tion as in Figure 4 of (Wang, 2002). For both the exact and
approximate models, 400 simulations were run at coherence
levels¢’ € {1,5,10, 20, 40}. The winner is determined as the
selective population with the highest activity after the stim-
ulus period. A 90% confidence interval is estimated using

bootstrapping by independently resampling the simulations
5000 times with replacement and calculating the probability
for each trial. The error bars represent the confidence inter-
val at each coherence level. Our results for the exact and
approximated model agree well with the results from Wang
(2002), which are shown by the black line in Fig. 4. It shows
the Weibull function P(correct) =1 — 0.5 x exp(—(%)ﬁ)
for parameters o = 9.2 and § = 1.5 reported by Wang
(2002) as optimal fit to their simulation results.

3.3 Benchmarks

Figure 5 summarizes our benchmark experiments, with
detailed timings for the largest network size provided in
Table 3. The implementations in NEST (dark brown) and
Brian2 (dark blue) supporting arbitrary connectivity and
using the exact NMDA neuron model are more than two
orders of magnitude slower than the approximating (NEST,
light brown) and restricted (Brian2, light blue) implementa-
tions, reducing the wall-clock time required for simulating
one second of model time from hours to seconds. Simu-
lation times scale quadratically with network size for the
general exact case in both NEST and Brian2, because the
effort to integrate NMDA dynamics increases quadratically.
Brian2 is faster than NEST in this case (7.6 times for the
largest network size), presumably because Brian2 generates
more efficient code by just-in-time compilation compared to
NEST’s prebuilt binary. The choice of ODE integrator has a
minor effect (data not shown) as has the slight difference in
firing rates we observed'.

Using the same amount of computational resources
(eight threads or CPU cores), the approximation in NEST is
about 2.9 times slower than the restricted implementation in
Brian2. Exploiting NEST’s hybrid parallelization capabili-
ties (Plesser et al., 2007), we found 8 MPI processes using
16 threads each to be the optimal configuration to use all
128 cores available on a compute node. With this configura-
tion, NEST simulated the largest network sizein 2.2 s for 1 s
of model time, i.e., about 4.6 times faster than the restricted
and 3460 times faster than the unrestricted model in Brian2.

! Firing rates in simulations performed with Brian2 are approximately
10% lower than those obtained with NEST for the exact model. We
plan to investigate this elsewhere.
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Fig. 6 Decision-making dynamics in a sparsely coupled network. (A)
Population-averaged values of Sa (t) (blue lines) and Sg(¢) (orange
lines) from eight differently seeded simulations of a fully connected
network. (B) Same as (A), but for a network with 95% connectivity,
where the recurrent conductances are scaled by a factor of 1/0.95. (C)
and (D) Same as (A) and (B), but for a network with 20% base connec-
tivity, where the intra-selective connectivity and inhibitory-selective

Brian2 does not support MPI parallelization and we did not
observe any improvement in simulation times beyond eight
threads in a single process (data not shown).

Interestingly, the MPI-parallel simulation of the approxi-
mation in NEST shows linear scaling of simulation time
with problem size, even though the number of synapses
in the network grows quadratically also in this case. The
most plausible explanation for this observation is that inte-
grating the dynamics of the neurons including their aggre-
gated synaptic conductances dominates computation in this
case, while the actual cost of spike transmission becomes
negligible.

3.4 Binary decision-making in sparsely coupled
networks

Since our approximation allows for arbitrary net-
work connectivity, we investigate the dynamics of a

@ Springer

F  E[SA(t) — Sa(t)], 20% base connectivity
0.5

0.4
0.3

0.2

1.00
0.75
0.50
0.25

0.00

0.2 03 04 0.5 0.6 0.7 0.8 09 1.0

Ear— Ea, Eg = Eg conn.

connectivity have been adjusted; see text for details. The values of
these connectivities are indicated by the red and blue dots respectively
in (E) and (F). (E) Expectation of the Sa (t) for times > 4 000 ms, for
a base connectivity of 20%, where the intra-selective and inhibitory-
selective connectivities are adjusted. The values are also averaged over
eight independent simulations. (F) Similar to (E), but for the difference
Sa(t) — Ss(t)

decision-making network with sparse connectivity,
described in Section 2.3.2. To determine whether a particu-
lar connectivity supports decision-making, we clamp the
value of SjNnmpa of all outgoing NMDA-synapses from
selective population A to 1, and from selective population
B to 0 for two seconds. We denote the population-averaged
value of S; nmpa over all neurons in selective population A
by Sa(t), and equivalently for selective population B. Once
the clamp is released, the network dynamics are allowed to
evolve freely, and Sx(t) decreases while Sg(t) increases.
If a stable, asymmetric state where E[Sx (t)] > E[Sg(t)]
exists, the network will relax into this state.

Figure 6A and B show S (¢) and Sg(t) from the decision-
making network with 100% and 95% connectivity between
all populations, respectively. Eight simulations with differ-
ent seeds were run, and the individual time series are shown
in the figures. In the 95% connectivity simulations, syn-
aptic weights were scaled by a factor of 1/0.95. Even with
this minor reduction in connectivity, the asymmetric state
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becomes unstable, leading the network to converge toward
a symmetric state. Without scaling the weights, a mere one
percent decrease in connectivity suffices to destabilize the
asymmetric state.

The stability of the asymmetric state depends on the
winning selective population’s ability to maintain a high
NMDA current while ensuring sufficient recurrent inhibi-
tion to suppress the losing population. To explore this, we
performed simulations of a sparsely connected network
where the internal connectivity within each selective popu-
lation, as well as the connectivity between inhibitory and
selective populations, were systematically varied. Start-
ing with a base connectivity of 20%, simulations were
run with adjustments to intra-selective (E4 — Es and
Ep — Eg, see Table 1C) and inhibitory-selective connec-
tivity (I — E and I — Ep), taking independent values on
the interval [0.2, 1.0]. Figures 6C and 6D show examples
from simulations with 20% base connectivity, but where the
intra-selective and inhibitory-selective connectivities have
been adjusted to regain decision-making dynamics. The val-
ues of the adjusted connectivities are indicated by the red
and blue dots in Fig. 6E and F respectively. For the example
in Fig. 6C, the network is in a state similar to that of the fully
connected network shown in 6A. In contrast, the example in
Fig. 6D, which features higher intra-selective connectivity,
demonstrates a significantly larger difference between Sx
and Sg.

Figure 6E and F show the expected value of Sa(t) and
the expected value of S (t) — Sg(t), respectively, taken
over the time interval [4000 ms, 6000 ms|, and averaged
over the eight independent simulations. Figure 6E illustrates
that the expected value of S is highly contingent upon
both inhibitory-selective connectivity and intra-selective
connectivity. As inhibitory connectivity increases, Sa ()
quickly becomes almost entirely suppressed above a certain
threshold, which is roughly linearly dependent on the selec-
tive connectivity. The expected difference between S (t)
and Sp(t), shown in Fig. 6F, reveals the required balance
between intra-selective and inhibitory-selective connectiv-
ity for the network to support decision-making dynamics. A
minimum level of both inhibitory and selective connectivity
is required, and, generally, for any given level of inhibitory
connectivity, increasing the selective connectivity increases
the distance Sy — Sg. For low levels of inhibitory-selective
connectivity, E[Sa] = E[Sg], with values increasing with
the intra-selective connectivity. There are sharp upper and
lower boundaries given by the level of inhibitory-selective
connectivity, between which the two selective populations
take on different levels of activity. Below the lower bound-
ary, both populations are in a high activity state, and above
the upper boundary, both populations are suppressed. It
is important to note that synaptic conductances were kept

constant in these simulations; varying them would likely
change the connectivity balance needed to maintain deci-
sion-making dynamics.

4 Discussion

In the present work, we have developed an approximate
model of the NMDA-receptor-mediated synaptic currents
proposed by Wang (1999), Brunel and Wang (2001), and
Wang (2002) for leaky integrate-and-fire neurons. The orig-
inal model features a gating variable that is modeled by a
two-dimensional system of ordinary differential equations,
for which the total synaptic inputs from a presynaptic popu-
lation cannot be simulated in aggregated form, except for in
the case of fully connected networks with identical delays.
Two features of the original model are important to capture.
First, the long time constant of the gating variable which is
an order of magnitude larger than those of AMPA or GABA
synapses, and second, the saturation of the gating variable
as its value increases.

The approximate model is constructed such that it fol-
lows a simple exponential function between synaptic events,
and with instantaneous rise times at all synaptic events
while being asymptotically equal to the original model.
This allows the sum over postsynaptic gating variables to
be reduced to a single differential equation per neuron. The
decay time constant is set explicitly to be the same as that of
the original value. Since the rise time of the gating variable
is typically taken to be very short compared to the decay
time, reducing it to an instantaneous jump is not a large
deviation from the original model. The magnitude of the
jump in the gating variable after a synaptic event decreases
as the value of the gating variable itself increases, such that
it saturates, although the maximum value the approximate
value can reach is slightly larger than one. As such, the
interpretation of the gating variable as the fraction of open
ion channels is not technically valid, but for practical pur-
poses it is not important.

The error introduced by the approximation is mainly lim-
ited to the first few milliseconds after synaptic events and
rapidly decays after (Fig. 1). Due to the instantaneous jump,
the approximation gives higher values than the original
model, which causes the NMDA currents to also be higher.
Reducing the conductance slightly can help correct this,
although in practice the effect is negligible. In the mem-
brane potential, the subthreshold errors introduced by the
approximation are less noticeable, as they are exponentially
filtered with the larger membrane time constant. For the case
of both models receiving identical input strong enough to
cause spiking, there will be an error in the membrane poten-
tial that accumulates as the spike times are shifted (Fig. 2).
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In networks, this effect frequently will not be relevant, as
sources of stochasticity such as Poissonian input and ran-
domized connections will have a much stronger effect on
exact spike timings. For the case of the binary decision-
making network studied by Wang (2002) and Wong and
Wang (2006), we show that the dynamics of the network
are preserved (Fig. 3), and closely replicate the overall deci-
sion-making results (Fig. 4).

The approximate model reduces simulation time for net-
work models with arbitrary connectivity by over two orders
of magnitude, from hours to seconds per second of model
time. Fully exploiting NEST’s parallel capabilities, we
achieved simulation times only slightly longer than twice
the time simulated. This significant improvement enables
the systematic exploration of larger networks with plausi-
ble network structure, overall size and connection density
including the NMDA dynamics introduced by Wang (2002).
In contrast, the restricted implementation can only be used
to simulate networks with all-to-all connectivity and identi-
cal delays.

The simulation-time and firing-rate differences we
observed between NEST and Brian2 suggest further inves-
tigations into both the performance and correctness of
simulators (see also Van Albada et al., 2018). The all-to-
all network due to Wang (2002) is likely not suitable as a
reference benchmark for this purpose as all-to-all connec-
tivity severely limits scalability and, for large networks,
biological plausibility. Instead, the network model recently
proposed by Moreni et al. (2025) might take on a similar
role for models including NMDA-dynamics as the Potjans-
Diesmann microcircuit model (Potjans & Diesmann, 2014)
has had in driving simulation technology for networks com-
posed of simpler neuron models (Senk et al., 2025).

The principal motivation behind developing an approxi-
mate model is to enable the study of networks of arbitrary
topology. We applied the approximate model to a sparsely
connected decision-making network, to see how sparseness
affects the dynamics of the network. The fully connected
decision making network has been studied extensively both
numerically and analytically (Brunel & Wang, 2001; Wang,
2002; Wong & Wang, 2006). For models with instantaneous
synapses, a complete mean-field theory has been developed
(Amit & Brunel, 1997; Brunel, 2000). For the synaptic
models studied here, a set of mean-field equations of the
population firing rates of the fully connected decision mak-
ing network can be constructed under a series of approxima-
tions, one of which is that the main sources of variation in
the membrane potential are the AMPA synapses activated
by the external Poisson population (Brunel & Wang, 2001).
In a sparse decision-making network, there is significant
variation also in the recurrent GABA and NMDA synapses,
which have different time constants. In this setting, the same
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mathematical approach cannot be taken, and numerical sim-
ulations must be relied on instead.

We have shown that the ability of the sparse network to
exhibit decision-making behavior is highly sensitive to the
degree of connectivity, particularly the balance between the
intra-selective connectivity and the inhibitory-selective connec-
tivity (Fig. 6). For the particular parameter values chosen here,
we found that there is a range of intra-selective and inhibitory-
selective connectivities that support decision-making dynamics,
and which influence the level of asymmetry in activity between
the two selective populations. In particular, high intra-selective
connectivities of over 50% were required, and significantly
lower inhibitory-selective connectivities of around 25%—40%.
The exact balance is also dependent on the synaptic strengths
and conductances, which were not systematically varied in the
same experiment.

5 Conclusion

The approximate model of NMDA-receptor-mediated syn-
aptic currents in leaky integrate-and-fire neurons presented
in this paper shows behavior close to that of the original
model by Wang and Brunel (Wang, 1999; Brunel & Wang,
2001; Wang, 2002). Synaptic currents in the exact and
approximate model differ only for a few milliseconds after
each incoming spike, leaving the dynamics of networks
largely unaffected. While the original model is widely used,
its practical applications are mostly restricted to fully con-
nected networks with identical delays. By reducing simu-
lation times by more than two orders of magnitude, our
approximation to NMDA dynamics enables the investiga-
tion of more general networks of relevant size in close to
real time without imposing restrictions on network connec-
tivity or the distribution of synaptic delays.
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