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mean-field models (Wong & Wang, 2006; Deco & Jirsa, 
2012). The model features a two-dimensional nonlinear 
system of ordinary differential equations for the presynaptic 
gating variable Sj(t). Due to the nonlinearity of the sys-
tem, the synaptic current in a postsynaptic neuron cannot 
be simulated in aggregated form. In a general implementa-
tion of the model, all synapses must be simulated explicitly, 
which is prohibitively expensive for all but small networks. 
In the specific case of a fully connected network with iden-
tical delays, the sum over all presynaptic gating variables 
is identical for all neurons and can be simulated globally 
instead of individually for each neuron. The original model 
is, therefore, mainly of use in the case of fully connected 
networks with identical delay.

Noting that the presynaptic gating variable Sj(t) only 
depends on the spike history of the presynaptic neuron, we 
show that the NMDA dynamics can be approximated by an 
exponential decay between spikes and a history-dependent 
jump upon spikes. This form allows the summed gating 
variables in postsynaptic neurons to be reduced to a single 
variable, which can be efficiently simulated regardless of 
network connectivity or delay distribution. In the present 
work, we derive the approximate model and empirically 
characterize the error by comparing the original model 
and the approximation in neurons receiving identical input 
spikes. We show that errors in the synaptic currents vanish 

1  Introduction

A model for a leaky integrate-and-fire neuron with NMDA-
receptor-mediated synaptic currents generating persistent 
activity proposed by Wang and Brunel (Wang, 1999; Brunel 
& Wang, 2001; Wang, 2002), based on earlier kinetic model-
ing work by Destexhe et al. (1994), has been widely adopted 
in computational neuroscience, both for spiking-neuron and 
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Abstract
A model for NMDA-receptor-mediated synaptic currents in leaky integrate-and-fire neurons, first proposed by Wang (J 
Neurosci, 1999), has been widely studied in computational neuroscience. The model features a fast rise in the NMDA 
conductance upon spikes in a pre-synaptic neuron followed by a slow decay. In a general implementation of this model 
which allows for arbitrary network connectivity and delay distributions, the summed NMDA current from all neurons in 
a pre-synaptic population cannot be simulated in aggregated form. Simulating each synapse separately is prohibitively 
slow for all but small networks, which has largely limited the use of the model to fully connected networks with identical 
delays, for which an efficient simulation scheme exists. We propose an approximation to the original model that can be 
efficiently simulated for arbitrary network connectivity and delay distributions. Our results demonstrate that the approxi-
mation incurs minimal error and preserves network dynamics. We further use the approximate model to explore binary 
decision making in sparsely coupled networks.
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rapidly and that the effect on the membrane potential is 
small. Furthermore, we reproduce the binary decision-mak-
ing network studied by Wang (2002) and Wong and Wang 
(2006) with both the approximate model and the original 
model. We find that the model dynamics are well-preserved 
in the approximation. Benchmarks show a significant 
speedup for the approximate model compared to a general 
implementation of the original model designed for arbitrary 
connectivity and delay distributions. Leveraging the flexi-
bility and enhanced performance of the approximate model, 
we explore the dynamics of a sparsely connected binary 
decision-making network. A reference implementation of 
our approximate model is made available in the NEST sim-
ulator (Graber et al., 2024) as model iaf_bw_2001.

2  Methods

In this section, we first describe the original model, followed 
by the derivation of the approximate model. We then present 
the network models used in this paper and our benchmark-
ing setup.

2.1  Description of the original model

The original model (Brunel & Wang, 2001) is a conduc-
tance-based leaky integrate-and-fire neuron with a synaptic 
NMDA current given by

INMDA(t) =
gNMDA×(V (t)−VE)

1+[Mg2+]exp(−0.062V (t))/3.57
×

∑NE

j=1 wjSj,NMDA(t)
� (1)

dSj,NMDA(t)
dt =

− Sj,NMDA(t)
τNMDA,decay

+ αxj(t) (1 − Sj,NMDA(t)) � (2)

dxj(t)
dt

= − xj(t)
τNMDA,rise

+
∑

k

δ
(
t − tk

j

)
� (3)

where τNMDA,decay, τNMDA,rise and α are model param-
eters, and tk

j  are the spike times of neuron j. See Table 1 
for the complete model equations and Table 2 for parameter 
values.

2.2  Simplified NMDA gating dynamics

We will focus solely on the NMDA gating variables Sj(t) 
and xj(t). For simplicity, we use the shorthand notation τr 
and τd to represent τNMDA,rise and τNMDA,decay, respec-
tively. Assuming that neuron j last spiked at time zero and 

does not spike again until time t, the solution to Eq. (3) is 
given by

xj(t) = x0
jexp

(
− t

τr

)
,� (4)

where x0
j  is the value immediately after the spike. By substi-

tuting the solution for xj  into Eq. (2), we obtain the follow-
ing expression for the time evolution of Sj  until t:

dSj

dt
+

(
1
τd

+ αx0
jexp

[
− t

τr

])
Sj = αx0

jexp
[
− t

τr

]
� (5)

We obtain the formal solution by applying an integrating 
factor as follows:

Sj(t) = exp
[
− t

τd
− αx0

jτr

(
1 − exp

[
− t

τr

])]

×
(
S0

j + αx0
jJ(t)

) � (6)

where x0
j  and S0

j  are the initial conditions. J(t) is the integral

J(t) =
∫ t

0
exp

[
t′

τ̃
+ αx0

jτr

(
1 − exp

[
− t′

τr

])]
dt′

where τ̃ = (1/τd − 1/τr)−1. This integral does not have a 
closed-form solution.

We seek an approximation of the form

Ŝj(t) = Spostexp
(

− t

τd

)
� (7)

where Spost is the—as yet unknown—initial value of the 
function immediately after spiking. We further assume that 
xj  has decayed to 0 before neuron j fires its next spike, 
so that xj  jumps to x0

j = 1 as the next spike is fired. We 
determine Spost as a function of the value of Ŝj(t) immedi-
ately before spiking, by requiring that the approximation is 
asymptotically equal to the true solution, i.e.,

lim
t→∞

Sj(t)
Ŝj(t)

= 1� (8)

By substituting Eqs. (6) and (7) into Eq. (8), we find that

Spost = limt→∞ exp
[
−ατr

(
1 − exp

[
− t

τr

])]

×
(
S0

j + αJ̃(t)
) � (9)

where

J̃(t) =
∫ t

0
exp

[
t′

τ̃
+ ατr

(
1 − exp

[
− t′

τr

])]
dt′� (10)
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A Model summary
Populations Three excitatory, one inhibitory, three external
Network 
model

Fully connected

Neuron 
model

Local populations: leaky integrate-and-fire, external: 
Poisson generator

Synapse 
model

Conductance-based, with fixed strength for each pair 
of populations

B Populations
Name Symbol Size
Selective A

EA NA = fNE
Selective B

EB NB = fNE
Nonselective

EN NN = (1 − 2f)NE

Inhibitory I
NI

C Connectivity
Source Target Weight Delay Receptors Connec-

tion rule

EA EA w+ td
AMPA,NMDA Fully 

connected

EB EB w+ td
AMPA,NMDA Fully 

connected

EA, EN EB w− td
AMPA,NMDA Fully 

connected

EB, EN EA w− td
AMPA,NMDA Fully 

connected

EA, EB, EN EN, I 1
td

AMPA,NMDA Fully 
connected

I EA, EB, EN, I 1
td

GABA Fully 
connected

D Neuron model
Type Leaky integrate-and-fire neuron
Description Dynamics of membrane potential Vi(t) (neuron 

i ∈ [1, N ]):
- Spike emission at times ti

l  with Vi(ti
l) ≥ Vthr

- Subthreshold dynamics:

Cm
dVi

dt = −gm(Vi − EL) − Ii(t) ∀l : t /∈ (ti
l , ti

l + tref] (15)

where Cm is the membrane capacitance, Vi the mem-
brane potential, gm the membrane conductance, and 
Ii(t) the synaptic inputs.
- Reset + refractoriness: Vi(t) = Vreset
∀l : t ∈ (ti

l , ti
l + tref]

Solved with RKF45 with adaptive step size, where 
spikes are checked at intervals of dt.
Membrane potential is initialized as Vi = EL at t = 0.

E Synapse model
Type Conductance-based currents
Description Isyn(t) = IAMPA(t) + INMDA(t) + IGABA(t),

IAMPA(t) = gAMPA × (V (t) − VE) ×
NE∑
j=1

wjSj,AMPA(t),

INMDA(t) = gNMDA×(V (t)−VE )
1+[Mg2+]exp(−0.062V (t))/3.57 ×

NE∑
j=1

wjSj,NMDA(t),

IGABA(t) = gGABA × (V (t) − VI) ×
NE∑
j=1

wjSj,GABA(t)

Table 1  Description of decision-making network following the guidelines of Nordlie et al. (2009)
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The value of Sj  at t+, immediately after the spike, is then 
given by

Sj

(
t+)

= Spost = k0 + k′
1Sj

(
t−)

.

In a postsynaptic neuron, the sum over all presynaptic Sj is 
aggregated in a single variable. Therefore, the change in Sj  
upon the spike, rather than its value immediately after the spike, 
must be transmitted to the postsynaptic neuron to update the 
aggregated variable. The change in Sj upon the spike at time t is

∆Sj = Sj

(
t+)

− Sj

(
t−)

= k0 + k′
1Sj

(
t−)

− Sj

(
t−)

= k0 + k1Sj

(
t−)

,

with k1 = k′
1 − 1. The change ∆Sj  can then be transmitted 

to all postsynaptic neurons and added to their aggregated S 
input variable. The aggregated NMDA gating variable in a 
postsynaptic neuron can be simulated using the following 
differential equation

dS

dt
= − S

τd
+

∑
j,k

∆Sj(t)δ
(
t − tk

j

)
.� (14)

Reference implementations of both the approximate model 
and the original model can be found in the NEST simula-
tor under the model names iaf_bw_2001 and iaf_bw_2001_
exact, respectively.

Substituting u = ατre− t′
τr , the integral J̃(t) can be 

expressed in the limit as

lim
t→∞

J̃(t) = 1
α

eατr (ατr)
τr
τd

∫ ατr

0
u

− τr
τd e−udu

= 1
α

eατr (ατr)
τr
τd γ

[
1 − τr

τd
, ατr

]
,

where γ is the lower incomplete gamma function (DLMF, 
2024, Eq. 8.2.1). Thus, Eq. (9) can be evaluated as

Spost = e−ατrS0
j + (ατr)

τr
τd γ

[
1 − τr

τd
, ατr

]
� (11)

We define two constants

k0 = (ατr)
τr
τd γ

[
1 − τr

τd
, ατr

]
� (12)

k′
1 = e−ατr , � (13)

which depend solely on the synaptic parameters. For a pre-
synaptic neuron j, let t̂ be the time of the previous spike 
and t− the time immediately before the next spike. Then, 
according to the definition of our approximation, we have

Sj

(
t−)

= Sj

(
t̂
)

e
− t−−t̂

τd .

dSj,AMPA
dt = − Sj,AMPA

τAMPA
+

∑
k

δ
(
t − tk

j

)

dSj,GABA
dt = − Sj,GABA

τGABA
+

∑
k

δ
(
t − tk

j

)

dSj,NMDA
dt = − Sj,NMDA

τNMDA,decay
+ αxj (1 − Sj,NMDA)

dxj

dt = − xj

τNMDA,rise
+

∑
k

δ
(
t − tk

j

)
}

Exact model

dSj,NMDA
dt = − Sj,NMDA

τNMDA,decay
+

∑
k

δ
(
t − tk

j

)
(k0 + k1Sj,NMDA)

}
Approximation

F Signals
Name Target Description

P0 EA, EB, EN, I Constant rate Poisson genera-
tor with rate νext and weight 1. 
Active from t = 0 to t = T .

PA EA
Poisson generator with rates 
sampled from N (µ1, 4) every 
50ms and weight 1. Active from 
t = 1000 ms to t = 3000 ms.

PB EB
Poisson generator with rates 
sampled from N (µ2, 4) every 
50ms and weight 1. Active from 
t = 1000 ms to t = 3000 ms.

Table 1  (continued) 
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2.3.1  Decision-making network

To validate the approximation in a practical use case, we rep-
licate the decision-making network model originally studied 
by Wang (2002). This network consists of three excitatory 
populations and one inhibitory population, all of which are 
recurrently connected. An external population, modeled as 
a Poisson process, projects equally onto all recurrent neu-
rons. The selective populations EA and EB each comprise 
a fraction f of the total number of excitatory neurons, while 
the nonselective population EN comprises the remaining 
fraction 1 − 2f  of excitatory neurons. The selective popula-
tions receive a transient stimulus in the form of spikes onto 
AMPA synapses from an additional Poisson process. The 
relative strength of the transient stimulus received by the 
selective populations is determined by the input coherence 
c′ of the signal. The rate of the transient stimulus is given 
by µA = µ0 + ρAc′, µB = µ0 − ρBc′. In this study, we con-
sider the case where µ0 = 40 sp/s, and ρA = ρB = µ0

100 . 
A concise description of the model is provided in Table 1, 

and the parameter values used are listed in Table 2.

2.3.2  Sparse decision-making network

To investigate the dynamics of a sparsely connected deci-
sion-making network, we change the connectivity rule to 
random fixed in-degree ϵXYNX without multapses (Senk 
et al., 2022). Here, ϵXY denotes the connection probability 
from presynaptic population X onto postsynaptic population 
Y, and NX  denotes the size of presynaptic population X. 
When ϵXY = 1 for all X and Y, the fully connected network 
is recovered.

For the first two seconds of the simulations, all outgo-
ing NMDA connections from the selective populations 
are replaced by a constant “SNMDA-current” with value 
NAϵAXwAXgNMDA/τNMDA, which is added to the right-
hand side of Eq.  14 for all populations. Here, ϵAX is the 
connection probability from presynaptic selective popu-
lation A onto postsynaptic population X, and wAX is the 
corresponding synaptic weight. This drives the aggregated 
SNMDA-value in the postsynaptic neurons towards the value 
it would take if all Sj,NMDA-values in selective population 
A were 1, and the corresponding values for selective pop-
ulation B were 0, effectively clamping them. After 2 sec-
onds, the NMDA connections are restored and the “SNMDA

-current” is removed. If the given connectivity admits an 
asymmetric state, i.e., a state where one of the selective 
populations has higher activity than the other, the network 
will relax into it.

By varying the values of the connection probabili-
ties within the network, we can determine the values that 
support decision-making dynamics. Simulations were 

2.3  Network models

Here we describe the network model used to validate 
the approximation and for exploring decision-making in 
sparsely connected networks respectively, as well as our 
benchmarking setup.

Table 2  Parameters for decision-making network from Wang (2002)
Symbol Description
Neuron parameters

Excitatory 
neurons

Inhibi-
tory 
neurons

Cm
Membrane capacitance 500 pF 250 pF

tref
Absolute refractory period 2 ms 1 ms

Vthr
Firing threshold −50 mV −50 mV

Vreset
Reset membrane potential −55 mV −55 mV

EL
Passive leak reversal potential −70 mV −70 mV

α NMDA gating variable gain 
factor

0.5 ms-1  0.5 
ms-1

[Mg2+] Magnesium ion concentration 1.0 mM 1.0 mM

τAMPA
AMPA synaptic time constant 2 ms 2 ms

τGABA
GABA synaptic time constant 2 ms 2 ms

τNMDA,r
NMDA synaptic rise time 
constant

2 ms 2 ms

τNMDA,d
NMDA synaptic decay time 
constant

100 ms 100 ms

gL
Leak conductance 25 nS 20 nS

gAMPA
AMPA conductance 0.05 nS 0.04 nS

gGABA
GABA conductance 1.3 nS 1.0 nS

gNMDA
NMDA conductance 0.165 nS 0.13 nS

Population parameters

NE
Total number of excitatory 
neurons

1600

NI
Total number of inhibitory 
neurons

400

f Fraction of each selective 
population

0.15

Connection parameters

td
Synaptic delay period 0.5 ms

w+
Potentiated weight 1.7

w−
Depressed weight 1 − f(w+ − 1)(1 − f)

Signal parameters

νext
External input rate 2400 sp/s

µ0
Base signal rate to selective 
populations

40 sp/s

ρA
Coherence scaling factor selec-
tive pop. A

0.4

ρB
Coherence scaling factor selec-
tive pop. B

0.4

Simulation parameters

Tsim
Simulation duration 4000 ms

dt Time resolution 0.1 ms
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studied by Wang (2002) and Wong and Wang (2006) using 
both the exact and approximate models to compare the 
dynamics of each network. Furthermore, leveraging the 
flexibility and improved performance offered by the approx-
imation, we explore the dynamics of the binary decision-
making network with sparse connectivity.

3.1  Errors in NMDA-receptor-mediated currents and 
membrane potential

 
While the original model has a finite rise time in the 

NMDA gating variable, characterized by the time constant 
τNMDA,r, the approximate model introduces an instanta-
neous jump. Immediately after any given spike, the error 
in the gating variable of the approximation will then be 
k0 + k1S0, where S0 is the value of the gating variable 
immediately before the spike. In a postsynaptic neuron, 
the effect on the synaptic current due to NMDA receptors 
will be through the coupling described by Eq. (1), and the 
error of the synaptic current will also rise instantaneously. 
The errors of the membrane potential are filtered through 
Eq. (15) and will increase at a finite rate. Due to the instanta-
neous jump in the NMDA gating variable caused by a spike, 
the postsynaptic current will be higher in the approximate 
model compared to the exact model. As the gating variable 
of the exact model increases, the error rapidly decreases on 
the time scale of τNMDA,r. Figure 1 shows an example of 
INMDA and Vm for both the exact and approximate models 
in a simulation where they receive identical input at 20 sp/s. 
For the synaptic currents, the error jumps instantaneously 
and decays on a short time scale. The error in membrane 
potential rises on a short time scale and decays over a longer 
time scale.

Because the error of the approximate NMDA gating vari-
able from a single spike decreases rapidly and its differen-
tial equation is linear, the errors do not accumulate over 
time but instead depend only on the number of spikes in 
the immediate past. If the neuron receives sufficiently high 
input to reach the threshold, the small differences between 
the exact model and the approximate model will result in 
small changes to the exact timing of spike events. These 
errors in spike times accumulate, and in such cases, the dif-
ferences between simulations of the exact model and the 
approximate model receiving identical input become more 
pronounced.

Figure 2 shows the root mean square difference (RMS) 
between membrane potentials from simulations of the exact 
model and the approximate model. Both models receive 
identical inputs from a presynaptic population with Pois-
son spikes, with variations in presynaptic population size, 
presynaptic firing rate, and synaptic connection weights. As 

run with ϵXY = 0.2 for all pairs of populations except 
ϵAA = ϵBB (internal connectivity within each selective 
population) and ϵIA = ϵIB (inhibitory-selective connectiv-
ity). These two connectivity values were systematically var-
ied across 33 evenly spaced points in the interval [0.2, 1.0] 
for each pair.

2.3.3  Benchmarking setup

We use the fully-connected decision-making network to 
measure simulation times, but with f = 0. This results in 
a network with one excitatory and one inhibitory popula-
tion and steady-state activity. We scale the network size 
from 1.28 times to 10.24 times the size of the original 
network in powers of 2. These network sizes, comprising 
from 2560 to 20480 neurons, were chosen to be evenly 
divisible across up to 128 parallel threads. Due to the 
all-to-all connectivity and the pairing of AMPA and 
NMDA synapses, this results in a network of about 755 
million synapses for the largest network size. Synaptic 
conductances for all recurrent connections were scaled 
inversely with network size to approximately maintain 
network dynamics.

We benchmark four different implementations of this 
model: Using NEST and our approximation (iaf_bw_2001), 
using NEST and the original model (iaf_bw_2001_exact) 
as well as two implementations in Brian2 as external refer-
ences. The first of these is a restricted implementation that 
only supports fully connected networks with equal delays 
(Wimmer & Stimberg, 2023), while the other allows arbi-
trary connectivity; it is inspired by Moreni et al. (2025). 
Neuron models in NEST used an adaptive Runge-Kutta-
Fehlberg-45 numerical solver, which has a slightly higher 
computational cost than the Runge-Kutta-4 numerical 
solver used in the Brian2 simulations.

Benchmark results reported here were obtained with 
NEST 3.8 (Graber et al., 2024) on the JURECA supercom-
puter at the Jülich Supercomputing Center equipped with 
AMD EPYC 7742 CPUs providing 128 compute cores. 
Simulations were performed using 8 and 128 threads. Eight 
threads are the minimum required to simulate the largest 
network size with NEST.

3  Results

We assess the accuracy of the approximate model using two 
approaches. First, we examine the differences in NMDA 
current and membrane potential between neurons with exact 
and approximate NMDA dynamics when they receive syn-
aptic activations from a Poisson process at different rates. 
Second, we reproduce the binary decision-making network 
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Fig. 2  RMS of difference in voltage traces. The root mean square 
(RMS) of the difference between the voltage traces of the exact and 
approximate models in a simulation where a postsynaptic neuron 
receives NMDA currents from a presynaptic population of Poisson 
neurons. The color of the dots indicates the synaptic connection weight 
(w), ranging from 0.1 to 100. The size of each dot is proportional to 

the square root of the presynaptic population size npre, varying from 
1 to 3200. The total input is calculated as npreνprew, where νpre is 
the presynaptic firing rate. The three insets show the time series of the 
membrane potential of the exact model (orange) and the approxima-
tion (blue) in simulations where the neuron respectively exhibits high, 
low, and no spiking activity

 

Fig. 1  NMDA-receptor-mediated synaptic currents and membrane 
potential. For both the exact model (dashed orange lines) and the 
approximate model (solid blue lines), a postsynaptic neuron receives 
identical input spikes. The resulting NMDA receptor-mediated syn-
aptic currents and the error INMDA,exact − INMDA,approximate is 

shown in the top half, while the membrane potential and correspond-
ing error is shown in the bottom half. The red dots indicate the spike 
arrival times. The plots on the right side shows the same data as on the 
left, but zoomed in to provide a clearer view of the effect of individual 
spikes

 

1 3

481



Journal of Computational Neuroscience (2025) 53:475–487

activity in the other. After the transient stimulus period, the 
network may either maintain the asymmetric state or, with a 
certain probability, revert to a state where both populations 
have equal activity.

Figure 3 compares the dynamics of the binary decision-
making network when modeled using the exact and approx-
imate models. The figure shows three example simulations 
of the network at different coherence levels, similar to Fig-
ure 2 in Wang (2002). The network dynamics are qualita-
tively similar for both the exact and approximate models; 
however, for the approximate model, the selective popula-
tion with higher activity shows slightly increased activity. 
This is due to the marginally higher values of the NMDA 
gating variable in the approximate model. At coherence 
level c′ = 0, both selective populations have an equal 
probability of transitioning into the high activity state. As 
coherence increases, the stimulus to selective population A 
also increases, thereby increasing the probability that the 
network will transition into a state where population A has 
the higher activity. By performing multiple simulations at 
different coherence levels, the probability of making the 
correct choice—which is defined as selecting population A 

the total input—determined by the product of the number 
of presynaptic neurons, their firing rate, and the synaptic 
connection weight—increases, the RMS difference remains 
minimal until the postsynaptic neuron begins to fire. Once 
the postsynaptic neuron fires, the difference in membrane 
potential between the exact model and the approximate 
model increases rapidly due to the differences in spike 
times. The NMDA gating variable in the approximate model 
is higher than in the exact model, causing the approximate 
model to spike slightly earlier when given identical input.

3.2  Reproducing the Wang (2002) binary decision-
making network

In the binary decision-making network studied by Wang 
(2002) and Wong and Wang (2006), described in Sec-
tion 2.3.1, NMDA receptor-mediated synaptic currents are 
crucial for enabling the network to sustain high activity 
within the selective populations. During the period when 
the selective populations receive a transient stimulus, the 
network transitions into an asymmetric state, characterized 
by high activity in one of the selective populations and low 

Fig. 3  Comparison of the exact and approximate models in binary 
decision-making network dynamics. Simulations of a binary decision-
making network using both the exact and the approximate models for 
three different coherence levels. The network connectivity, external 
inputs, and stimuli are identical across both models. Each panel shows 

a spike raster of 100 neurons from selective populations A and B at the 
top, and the population activity, measured by averaging the summed 
population spiking histogram over 50 ms time bins, at the bottom. The 
vertical lines indicate the start and end of the transient stimulus
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bootstrapping by independently resampling the simulations 
5000 times with replacement and calculating the probability 
for each trial. The error bars represent the confidence inter-
val at each coherence level. Our results for the exact and 
approximated model agree well with the results from Wang 
(2002), which are shown by the black line in Fig. 4. It shows 
the Weibull function P (correct) = 1 − 0.5 × exp(−( c′

α )β) 
for parameters α = 9.2 and β = 1.5 reported by Wang 
(2002) as optimal fit to their simulation results.

3.3  Benchmarks

 
Figure 5 summarizes our benchmark experiments, with 

detailed timings for the largest network size provided in 
Table 3. The implementations in NEST (dark brown) and 
Brian2 (dark blue) supporting arbitrary connectivity and 
using the exact NMDA neuron model are more than two 
orders of magnitude slower than the approximating (NEST, 
light brown) and restricted (Brian2, light blue) implementa-
tions, reducing the wall-clock time required for simulating 
one second of model time from hours to seconds. Simu-
lation times scale quadratically with network size for the 
general exact case in both NEST and Brian2, because the 
effort to integrate NMDA dynamics increases quadratically. 
Brian2 is faster than NEST in this case (7.6 times for the 
largest network size), presumably because Brian2 generates 
more efficient code by just-in-time compilation compared to 
NEST’s prebuilt binary. The choice of ODE integrator has a 
minor effect (data not shown) as has the slight difference in 
firing rates we observed1.

Using the same amount of computational resources 
(eight threads or CPU cores), the approximation in NEST is 
about 2.9 times slower than the restricted implementation in 
Brian2. Exploiting NEST’s hybrid parallelization capabili-
ties (Plesser et al., 2007), we found 8 MPI processes using 
16 threads each to be the optimal configuration to use all 
128 cores available on a compute node. With this configura-
tion, NEST simulated the largest network size in 2.2 s for 1 s 
of model time, i.e., about 4.6 times faster than the restricted 
and 3460 times faster than the unrestricted model in Brian2. 

1  Firing rates in simulations performed with Brian2 are approximately 
10% lower than those obtained with NEST for the exact model. We 
plan to investigate this elsewhere.

for c′ > 0 because it receives a stronger stimulus—can be 
determined as a function of the coherence level.

Figure 4 shows the probability of making a correct choice 
at different levels of coherence after 2 seconds of stimula-
tion as in Figure 4 of (Wang, 2002). For both the exact and 
approximate models, 400 simulations were run at coherence 
levels c′ ∈ {1, 5, 10, 20, 40}. The winner is determined as the 
selective population with the highest activity after the stim-
ulus period. A 90% confidence interval is estimated using 

Table 3  Simulation times for the largest network size
NEST Brian2

 Exact Approximation Approx 
(8 × 16)

Unrestricted Restricted

57659.4 s 29.2 s 2.2 s 7610.1 s 10.1 s
Data are shown for all four implementation for eight threads and for 
the approximation in NEST also for 8 MPI processes with 16 threads 
each. These are the same data as the rightmost data points in Fig. 5

Fig. 5  Network simulation time for different model implementations 
and network sizes. Solid lines show the time required to simulate 1 s 
model time for the exact implementation (dark brown) and approxi-
mation (light brown) in NEST, and the unrestricted (dark blue) and 
restricted (light blue) implementations in Brian2, all simulated on 
eight threads. The dashed light brown line shows the NEST approxi-
mation for 8 MPI processes with 16 threads each. The dash-dotted grey 
line marks a quadratic, the dotted grey line a linear increase in simula-
tion time with network size. Data are from a single simulation per data 
point. As the data are very clear, evolve systematically with size and 
the different implementations differ by factors, we prioritized energy 
conservation rather than collecting statistics.

 

Fig. 4  Decision-making accuracy. The probability of the network mak-
ing the correct decision—defined as selective population A maintain-
ing higher activity after the stimulus is turned off—as a function of the 
coherence level, c′. For each coherence level c′ ∈ {1, 5, 10, 20, 40}, 
the probability is calculated by performing 400 simulations for both 
the exact (orange dots) and the approximate (blue dots) models and 
determining the proportion of simulations where population A wins. 
The data points are slightly offset along the x-axis for clarity, although 
they are all simulated with the same coherence level value. A 90% 
confidence interval, estimated by bootstrapping, is represented by the 
error bars. The black line shows the Weibull function fitted by Wang 
(2002) for the same experimental setup
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decision-making network with sparse connectivity, 
described in Section 2.3.2. To determine whether a particu-
lar connectivity supports decision-making, we clamp the 
value of Sj,NMDA of all outgoing NMDA-synapses from 
selective population A to 1, and from selective population 
B to 0 for two seconds. We denote the population-averaged 
value of Sj,NMDA over all neurons in selective population A 
by SA(t), and equivalently for selective population B. Once 
the clamp is released, the network dynamics are allowed to 
evolve freely, and SA(t) decreases while SB(t) increases. 
If a stable, asymmetric state where E[SA(t)] > E[SB(t)] 
exists, the network will relax into this state.

Figure 6A and B show SA(t) and SB(t) from the decision-
making network with 100% and 95% connectivity between 
all populations, respectively. Eight simulations with differ-
ent seeds were run, and the individual time series are shown 
in the figures. In the 95% connectivity simulations, syn-
aptic weights were scaled by a factor of 1/0.95. Even with 
this minor reduction in connectivity, the asymmetric state 

Brian2 does not support MPI parallelization and we did not 
observe any improvement in simulation times beyond eight 
threads in a single process (data not shown).

Interestingly, the MPI-parallel simulation of the approxi-
mation in NEST shows linear scaling of simulation time 
with problem size, even though the number of synapses 
in the network grows quadratically also in this case. The 
most plausible explanation for this observation is that inte-
grating the dynamics of the neurons including their aggre-
gated synaptic conductances dominates computation in this 
case, while the actual cost of spike transmission becomes 
negligible.

3.4  Binary decision-making in sparsely coupled 
networks

 
Since our approximation allows for arbitrary net-

work connectivity, we investigate the dynamics of a 

Fig. 6  Decision-making dynamics in a sparsely coupled network. (A) 
Population-averaged values of SA(t) (blue lines) and SB(t) (orange 
lines) from eight differently seeded simulations of a fully connected 
network. (B) Same as (A), but for a network with 95% connectivity, 
where the recurrent conductances are scaled by a factor of 1/0.95. (C) 
and (D) Same as (A) and (B), but for a network with 20% base connec-
tivity, where the intra-selective connectivity and inhibitory-selective 

connectivity have been adjusted; see text for details. The values of 
these connectivities are indicated by the red and blue dots respectively 
in (E) and (F). (E) Expectation of the SA(t) for times ≥ 4 000 ms, for 
a base connectivity of 20%, where the intra-selective and inhibitory-
selective connectivities are adjusted. The values are also averaged over 
eight independent simulations. (F) Similar to (E), but for the difference 
SA(t) − SB(t)
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constant in these simulations; varying them would likely 
change the connectivity balance needed to maintain deci-
sion-making dynamics.

4  Discussion

In the present work, we have developed an approximate 
model of the NMDA-receptor-mediated synaptic currents 
proposed by Wang (1999), Brunel and Wang (2001), and 
Wang (2002) for leaky integrate-and-fire neurons. The orig-
inal model features a gating variable that is modeled by a 
two-dimensional system of ordinary differential equations, 
for which the total synaptic inputs from a presynaptic popu-
lation cannot be simulated in aggregated form, except for in 
the case of fully connected networks with identical delays. 
Two features of the original model are important to capture. 
First, the long time constant of the gating variable which is 
an order of magnitude larger than those of AMPA or GABA 
synapses, and second, the saturation of the gating variable 
as its value increases.

The approximate model is constructed such that it fol-
lows a simple exponential function between synaptic events, 
and with instantaneous rise times at all synaptic events 
while being asymptotically equal to the original model. 
This allows the sum over postsynaptic gating variables to 
be reduced to a single differential equation per neuron. The 
decay time constant is set explicitly to be the same as that of 
the original value. Since the rise time of the gating variable 
is typically taken to be very short compared to the decay 
time, reducing it to an instantaneous jump is not a large 
deviation from the original model. The magnitude of the 
jump in the gating variable after a synaptic event decreases 
as the value of the gating variable itself increases, such that 
it saturates, although the maximum value the approximate 
value can reach is slightly larger than one. As such, the 
interpretation of the gating variable as the fraction of open 
ion channels is not technically valid, but for practical pur-
poses it is not important.

The error introduced by the approximation is mainly lim-
ited to the first few milliseconds after synaptic events and 
rapidly decays after (Fig. 1). Due to the instantaneous jump, 
the approximation gives higher values than the original 
model, which causes the NMDA currents to also be higher. 
Reducing the conductance slightly can help correct this, 
although in practice the effect is negligible. In the mem-
brane potential, the subthreshold errors introduced by the 
approximation are less noticeable, as they are exponentially 
filtered with the larger membrane time constant. For the case 
of both models receiving identical input strong enough to 
cause spiking, there will be an error in the membrane poten-
tial that accumulates as the spike times are shifted (Fig. 2). 

becomes unstable, leading the network to converge toward 
a symmetric state. Without scaling the weights, a mere one 
percent decrease in connectivity suffices to destabilize the 
asymmetric state.

The stability of the asymmetric state depends on the 
winning selective population’s ability to maintain a high 
NMDA current while ensuring sufficient recurrent inhibi-
tion to suppress the losing population. To explore this, we 
performed simulations of a sparsely connected network 
where the internal connectivity within each selective popu-
lation, as well as the connectivity between inhibitory and 
selective populations, were systematically varied. Start-
ing with a base connectivity of 20%, simulations were 
run with adjustments to intra-selective (EA → EA and 
EB → EB, see Table 1C) and inhibitory-selective connec-
tivity (I → EA and I → EB), taking independent values on 
the interval [0.2, 1.0]. Figures 6C and 6D show examples 
from simulations with 20% base connectivity, but where the 
intra-selective and inhibitory-selective connectivities have 
been adjusted to regain decision-making dynamics. The val-
ues of the adjusted connectivities are indicated by the red 
and blue dots in Fig. 6E and F respectively. For the example 
in Fig. 6C, the network is in a state similar to that of the fully 
connected network shown in 6A. In contrast, the example in 
Fig. 6D, which features higher intra-selective connectivity, 
demonstrates a significantly larger difference between SA 
and SB.

Figure 6E and F show the expected value of SA(t) and 
the expected value of SA(t) − SB(t), respectively, taken 
over the time interval [4000 ms, 6000 ms], and averaged 
over the eight independent simulations. Figure 6E illustrates 
that the expected value of SA is highly contingent upon 
both inhibitory-selective connectivity and intra-selective 
connectivity. As inhibitory connectivity increases, SA(t) 
quickly becomes almost entirely suppressed above a certain 
threshold, which is roughly linearly dependent on the selec-
tive connectivity. The expected difference between SA(t) 
and SB(t), shown in Fig. 6F, reveals the required balance 
between intra-selective and inhibitory-selective connectiv-
ity for the network to support decision-making dynamics. A 
minimum level of both inhibitory and selective connectivity 
is required, and, generally, for any given level of inhibitory 
connectivity, increasing the selective connectivity increases 
the distance SA − SB. For low levels of inhibitory-selective 
connectivity, E[SA] = E[SB], with values increasing with 
the intra-selective connectivity. There are sharp upper and 
lower boundaries given by the level of inhibitory-selective 
connectivity, between which the two selective populations 
take on different levels of activity. Below the lower bound-
ary, both populations are in a high activity state, and above 
the upper boundary, both populations are suppressed. It 
is important to note that synaptic conductances were kept 
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mathematical approach cannot be taken, and numerical sim-
ulations must be relied on instead.

We have shown that the ability of the sparse network to 
exhibit decision-making behavior is highly sensitive to the 
degree of connectivity, particularly the balance between the 
intra-selective connectivity and the inhibitory-selective connec-
tivity (Fig. 6). For the particular parameter values chosen here, 
we found that there is a range of intra-selective and inhibitory-
selective connectivities that support decision-making dynamics, 
and which influence the level of asymmetry in activity between 
the two selective populations. In particular, high intra-selective 
connectivities of over 50% were required, and significantly 
lower inhibitory-selective connectivities of around 25%–40%. 
The exact balance is also dependent on the synaptic strengths 
and conductances, which were not systematically varied in the 
same experiment.

5  Conclusion

The approximate model of NMDA-receptor-mediated syn-
aptic currents in leaky integrate-and-fire neurons presented 
in this paper shows behavior close to that of the original 
model by Wang and Brunel (Wang, 1999; Brunel & Wang, 
2001; Wang, 2002). Synaptic currents in the exact and 
approximate model differ only for a few milliseconds after 
each incoming spike, leaving the dynamics of networks 
largely unaffected. While the original model is widely used, 
its practical applications are mostly restricted to fully con-
nected networks with identical delays. By reducing simu-
lation times by more than two orders of magnitude, our 
approximation to NMDA dynamics enables the investiga-
tion of more general networks of relevant size in close to 
real time without imposing restrictions on network connec-
tivity or the distribution of synaptic delays.
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In networks, this effect frequently will not be relevant, as 
sources of stochasticity such as Poissonian input and ran-
domized connections will have a much stronger effect on 
exact spike timings. For the case of the binary decision-
making network studied by Wang (2002) and Wong and 
Wang (2006), we show that the dynamics of the network 
are preserved (Fig. 3), and closely replicate the overall deci-
sion-making results (Fig. 4).

The approximate model reduces simulation time for net-
work models with arbitrary connectivity by over two orders 
of magnitude, from hours to seconds per second of model 
time. Fully exploiting NEST’s parallel capabilities, we 
achieved simulation times only slightly longer than twice 
the time simulated. This significant improvement enables 
the systematic exploration of larger networks with plausi-
ble network structure, overall size and connection density 
including the NMDA dynamics introduced by Wang (2002). 
In contrast, the restricted implementation can only be used 
to simulate networks with all-to-all connectivity and identi-
cal delays.

The simulation-time and firing-rate differences we 
observed between NEST and Brian2 suggest further inves-
tigations into both the performance and correctness of 
simulators (see also Van Albada et al., 2018). The all-to-
all network due to Wang (2002) is likely not suitable as a 
reference benchmark for this purpose as all-to-all connec-
tivity severely limits scalability and, for large networks, 
biological plausibility. Instead, the network model recently 
proposed by Moreni et al. (2025) might take on a similar 
role for models including NMDA-dynamics as the Potjans-
Diesmann microcircuit model (Potjans & Diesmann, 2014) 
has had in driving simulation technology for networks com-
posed of simpler neuron models (Senk et al., 2025).

The principal motivation behind developing an approxi-
mate model is to enable the study of networks of arbitrary 
topology. We applied the approximate model to a sparsely 
connected decision-making network, to see how sparseness 
affects the dynamics of the network. The fully connected 
decision making network has been studied extensively both 
numerically and analytically (Brunel & Wang, 2001; Wang, 
2002; Wong & Wang, 2006). For models with instantaneous 
synapses, a complete mean-field theory has been developed 
(Amit & Brunel, 1997; Brunel, 2000). For the synaptic 
models studied here, a set of mean-field equations of the 
population firing rates of the fully connected decision mak-
ing network can be constructed under a series of approxima-
tions, one of which is that the main sources of variation in 
the membrane potential are the AMPA synapses activated 
by the external Poisson population (Brunel & Wang, 2001). 
In a sparse decision-making network, there is significant 
variation also in the recurrent GABA and NMDA synapses, 
which have different time constants. In this setting, the same 
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