001     1050713
005     20260115203950.0
024 7 _ |a 10.1038/s41564-025-02037-0
|2 doi
024 7 _ |a 10.34734/FZJ-2026-00458
|2 datacite_doi
037 _ _ |a FZJ-2026-00458
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Einenkel, Rosa
|0 P:(DE-HGF)0
|b 0
245 _ _ |a The structure of the complete extracellular bacterial flagellum reveals the mechanism of flagellin incorporation
260 _ _ |a London
|c 2025
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1768481582_13098
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The bacterial flagellum is essential for motility, adhesion and colonization in pathogens such as Salmonella enterica and Campylobacter jejuni. Its extracellular structure comprises the hook, hook–filament junction, filament and filament cap. Native structures of the hook–filament junction and the cap are lacking, and molecular mechanisms of cap-mediated filament assembly are largely uncharacterized. Here we use cryo-electron microscopy to resolve structures of the complete Salmonella extracellular flagellum including the pentameric FliD cap complex (3.7 Å) and the FlgKL hook–filament junction (2.9 Å), as well as the Campylobacter extracellular flagellum before filament assembly (6.5 Å). This, coupled with structure-guided mutagenesis and functional assays, reveals intermediates of filament assembly, showing that FliD cap protein terminal domain movement and clockwise rotation enable flagellin incorporation and stabilization of the filament. We show that the hook–filament junction acts as a buffer, preventing transfer of mechanical stress to the filament, and reveal the structural basis for the initiation of filament assembly. Collectively, this study provides comprehensive insights into flagellum assembly and how flagellin incorporation is coupled with its secretion.
536 _ _ |a 5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)
|0 G:(DE-HGF)POF4-5352
|c POF4-535
|f POF IV
|x 0
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 1
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Qin, Kailin
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schmidt, Julia
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Al-Otaibi, Natalie S.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Mann, Daniel
|0 P:(DE-Juel1)179550
|b 4
|u fzj
700 1 _ |a Drobnič, Tina
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Cohen, Eli J.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Gonzalez-Rodriguez, Nayim
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Harrowell, Jane
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Shmakova, Elena
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Beeby, Morgan
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Erhardt, Marc
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
700 1 _ |a Bergeron, Julien R. C.
|0 P:(DE-HGF)0
|b 12
|e Corresponding author
773 _ _ |a 10.1038/s41564-025-02037-0
|g Vol. 10, no. 7, p. 1741 - 1757
|0 PERI:(DE-600)2845610-5
|n 7
|p 1741-1757
|t Nature microbiology
|v 10
|y 2025
|x 2058-5276
856 4 _ |u https://juser.fz-juelich.de/record/1050713/files/s41564-025-02037-0.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1050713
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)179550
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5352
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 1
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-20
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-20
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT MICROBIOL : 2022
|d 2024-12-20
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-20
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2024-12-20
|w ger
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b NAT MICROBIOL : 2022
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-3-20170113
|k ER-C-3
|l Strukturbiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-3-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21