001050726 001__ 1050726
001050726 005__ 20260115203950.0
001050726 037__ $$aFZJ-2026-00470
001050726 041__ $$aEnglish
001050726 1001_ $$0P:(DE-Juel1)200560$$aErkes, Rebecca$$b0$$eCorresponding author
001050726 1112_ $$aThe 76th Annual Meeting of the International Society of Electrochemistry$$cMainz$$d2025-09-07 - 2025-09-12$$wGermany
001050726 245__ $$aConnecting the Dots: Combining Tomography and Diffraction Techniques to Investigate Nucleation Behavior on Zn-Metal Electrodes
001050726 260__ $$c2025
001050726 3367_ $$033$$2EndNote$$aConference Paper
001050726 3367_ $$2BibTeX$$aINPROCEEDINGS
001050726 3367_ $$2DRIVER$$aconferenceObject
001050726 3367_ $$2ORCID$$aCONFERENCE_POSTER
001050726 3367_ $$2DataCite$$aOutput Types/Conference Poster
001050726 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1768490270_4204$$xAfter Call
001050726 502__ $$cRWTH Aachen
001050726 520__ $$aThe continued expansion of renewable energy sources resulted in an increased demand for safe and affordable energy storage solutions with high volumetric energy density. Alternative battery systems, such as zinc-air batteries (ZABs) and zinc-ion batteries (ZIBs) not only use affordable, safe and highly abundant materials, but their high theoretical capacity and volumetric energy density make them well suited for grid and long-term storage. However, their cyclability and efficiency are negatively impacted by the metallic zinc anodes inherent shape change, produced by uneven deposition and dendritic growth. To advance the more widespread application of zinc-based batteries it is therefore crucial to understand the mechanisms behind nucleation and causes for dendrite formation on the electrode surface.This work presents a correlative study combining tomography and diffraction methods to gain valuable insights into deposition processes at the zinc anode surface. With the information gained from X-ray computed tomography (XCT), diffraction contrast tomography (DCT) and electron back-scatter diffraction (EBSD) conclusions about the impact of the substrate crystal structure on zinc nucleation and dendritic growth could be drawn. The analyzed symmetrical model system included wire electrodes to minimize attenuation by reducing the amount of highly absorbing material in the field of view. The tip of the observed electrode is characterized ex situ using DCT and EBSD to capture the pristine state of the crystal structure. The pristine morphology and its evolution are recorded by means of a custom 2D/3D in-operando XCT imaging protocol to observe deposition and dissolution processes. In post-mortem scans, the state of the electrode is examined using the three techniques to evaluate the effects of electrochemical processes on the morphology and crystal structure. By combining these methods, the locations of nucleation sites and the development of deposits on the electrode surface could be correlated with the initial crystal structure, providing insights into the mechanisms of shape change and dendrite formation.
001050726 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001050726 7001_ $$0P:(DE-Juel1)201235$$aAhmed, Jehad$$b1$$ufzj
001050726 7001_ $$0P:(DE-Juel1)164430$$aDzieciol, Krzysztof$$b2
001050726 7001_ $$0P:(DE-Juel1)162243$$aDurmus, Yasin Emre$$b3
001050726 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b4
001050726 7001_ $$0P:(DE-Juel1)188297$$aWindmüller, Anna$$b5
001050726 7001_ $$0P:(DE-Juel1)176196$$aRaijmakers, Luc$$b6
001050726 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b7$$ufzj
001050726 909CO $$ooai:juser.fz-juelich.de:1050726$$pVDB
001050726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)200560$$aForschungszentrum Jülich$$b0$$kFZJ
001050726 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)200560$$aRWTH Aachen$$b0$$kRWTH
001050726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201235$$aForschungszentrum Jülich$$b1$$kFZJ
001050726 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)201235$$aRWTH Aachen$$b1$$kRWTH
001050726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164430$$aForschungszentrum Jülich$$b2$$kFZJ
001050726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162243$$aForschungszentrum Jülich$$b3$$kFZJ
001050726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b4$$kFZJ
001050726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188297$$aForschungszentrum Jülich$$b5$$kFZJ
001050726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176196$$aForschungszentrum Jülich$$b6$$kFZJ
001050726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b7$$kFZJ
001050726 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b7$$kRWTH
001050726 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001050726 920__ $$lyes
001050726 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001050726 980__ $$aposter
001050726 980__ $$aVDB
001050726 980__ $$aI:(DE-Juel1)IET-1-20110218
001050726 980__ $$aUNRESTRICTED