001     1050726
005     20260115203950.0
037 _ _ |a FZJ-2026-00470
041 _ _ |a English
100 1 _ |a Erkes, Rebecca
|0 P:(DE-Juel1)200560
|b 0
|e Corresponding author
111 2 _ |a The 76th Annual Meeting of the International Society of Electrochemistry
|c Mainz
|d 2025-09-07 - 2025-09-12
|w Germany
245 _ _ |a Connecting the Dots: Combining Tomography and Diffraction Techniques to Investigate Nucleation Behavior on Zn-Metal Electrodes
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1768490270_4204
|2 PUB:(DE-HGF)
|x After Call
502 _ _ |c RWTH Aachen
520 _ _ |a The continued expansion of renewable energy sources resulted in an increased demand for safe and affordable energy storage solutions with high volumetric energy density. Alternative battery systems, such as zinc-air batteries (ZABs) and zinc-ion batteries (ZIBs) not only use affordable, safe and highly abundant materials, but their high theoretical capacity and volumetric energy density make them well suited for grid and long-term storage. However, their cyclability and efficiency are negatively impacted by the metallic zinc anodes inherent shape change, produced by uneven deposition and dendritic growth. To advance the more widespread application of zinc-based batteries it is therefore crucial to understand the mechanisms behind nucleation and causes for dendrite formation on the electrode surface.This work presents a correlative study combining tomography and diffraction methods to gain valuable insights into deposition processes at the zinc anode surface. With the information gained from X-ray computed tomography (XCT), diffraction contrast tomography (DCT) and electron back-scatter diffraction (EBSD) conclusions about the impact of the substrate crystal structure on zinc nucleation and dendritic growth could be drawn. The analyzed symmetrical model system included wire electrodes to minimize attenuation by reducing the amount of highly absorbing material in the field of view. The tip of the observed electrode is characterized ex situ using DCT and EBSD to capture the pristine state of the crystal structure. The pristine morphology and its evolution are recorded by means of a custom 2D/3D in-operando XCT imaging protocol to observe deposition and dissolution processes. In post-mortem scans, the state of the electrode is examined using the three techniques to evaluate the effects of electrochemical processes on the morphology and crystal structure. By combining these methods, the locations of nucleation sites and the development of deposits on the electrode surface could be correlated with the initial crystal structure, providing insights into the mechanisms of shape change and dendrite formation.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
700 1 _ |a Ahmed, Jehad
|0 P:(DE-Juel1)201235
|b 1
|u fzj
700 1 _ |a Dzieciol, Krzysztof
|0 P:(DE-Juel1)164430
|b 2
700 1 _ |a Durmus, Yasin Emre
|0 P:(DE-Juel1)162243
|b 3
700 1 _ |a Tempel, Hermann
|0 P:(DE-Juel1)161208
|b 4
700 1 _ |a Windmüller, Anna
|0 P:(DE-Juel1)188297
|b 5
700 1 _ |a Raijmakers, Luc
|0 P:(DE-Juel1)176196
|b 6
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 7
|u fzj
909 C O |o oai:juser.fz-juelich.de:1050726
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)200560
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)200560
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)201235
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)201235
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)164430
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)162243
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161208
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)188297
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)176196
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 7
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21