| Home > Publications database > Stochastic model highlights the impact of crystallinity on saccharification dynamics depending on plant chemotype and pre-treatment > print |
| 001 | 1050731 | ||
| 005 | 20260116204418.0 | ||
| 024 | 7 | _ | |a 10.1371/journal.pone.0322367 |2 doi |
| 024 | 7 | _ | |a 10.34734/FZJ-2026-00474 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2026-00474 |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a De, Partho Sakha |0 0000-0003-0524-9625 |b 0 |
| 245 | _ | _ | |a Stochastic model highlights the impact of crystallinity on saccharification dynamics depending on plant chemotype and pre-treatment |
| 260 | _ | _ | |a San Francisco, California, US |c 2025 |b PLOS |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1768558082_8824 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Enzymatic saccharification of plant-sourced lignocellulosic biomass is a key step in biorefineryapproaches. However, these biomasses in their raw form are quite recalcitrant,which invokes the need for pre-treatment processes aimed at not only increasing glucoseconversion, but also better valorising non-carbohydrate biopolymers, such as lignin.Here, we use a two-fold computational and experimental approach to investigate enzymaticsaccharification time-courses for three cellulosic substrates (i.e. AVICEL, a mixtureof AVICEL with Organosolv lignin, and Sigmacell), and four plant-sourced lignocellulosicbiomasses following three different conditions for each of them (i.e. untreated,OrganoCat pre-treated with a swelling step, and OrganoCat pre-treated without aswelling step), making a total of fifteen samples. Considering the specific compositionof each substrate, the model successfully reproduces the saccharification dynamics foreach of the fifteen samples. It additionally provides values for the parameter CrystallinityFraction that faithfully replicate the substrate Crystallinity Indices experimentally determinedby ssNMR. Importantly, we show that the Crystallinity Index of distinct biomassesis differently impacted by swelling, while the sugar release is consistently impacted bypre-treatment across biomasses. Eventually, both artificial cellulosic and plant-sourcedlignocellulosic biomasses demonstrate that the sugar release is the result of the combinationof the Crystallinity Fraction (the model parameter for experimentally measuredssNMR Crystallinity Index) and the digestibility ratio, the model parameter that representsin a coarse-grained manner complex spatial and structural features. Overall, our resultsstress the need for further experimental investigations that physically explain variationsin the digestibility of crystalline bonds across biomasses and pre-treatment conditions.Additionally, we supplemented our work with theoretical investigations on a generic lignocellulosicsubstrate to highlight the roles of various model parameters in a qualitativemanner. |
| 536 | _ | _ | |a 2171 - Biological and environmental resources for sustainable use (POF4-217) |0 G:(DE-HGF)POF4-2171 |c POF4-217 |f POF IV |x 0 |
| 536 | _ | _ | |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524) |0 G:(DE-HGF)POF4-5241 |c POF4-524 |f POF IV |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Grande, Philipp M |0 P:(DE-Juel1)171913 |b 1 |
| 700 | 1 | _ | |a Heise, Henrike |0 P:(DE-Juel1)132002 |b 2 |u fzj |
| 700 | 1 | _ | |a Klose, Holger |0 P:(DE-Juel1)173960 |b 3 |
| 700 | 1 | _ | |a Raguin, Adélaïde |0 0000-0003-0057-7021 |b 4 |e Corresponding author |
| 773 | _ | _ | |a 10.1371/journal.pone.0322367 |g Vol. 20, no. 12, p. e0322367 - |0 PERI:(DE-600)2267670-3 |n 12 |p e0322367 - |t PLOS ONE |v 20 |y 2025 |x 1932-6203 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1050731/files/FINAL_Proofs_PONE.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1050731 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)171913 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)132002 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)173960 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2171 |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5241 |x 1 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2024-12-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2024-12-16 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PLOS ONE : 2022 |d 2024-12-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-02-08T09:37:46Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-02-08T09:37:46Z |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-16 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-16 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-16 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-16 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-16 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-16 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBG-2-20101118 |k IBG-2 |l Pflanzenwissenschaften |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBI-7-20200312 |k IBI-7 |l Strukturbiochemie |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IBG-2-20101118 |
| 980 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|