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Abstract
Enzymatic saccharification of plant-sourced lignocellulosic biomass is a key step in biore-
finery approaches. However, these biomasses in their raw form are quite recalcitrant,
which invokes the need for pre-treatment processes aimed at not only increasing glu-
cose conversion, but also better valorising non-carbohydrate biopolymers, such as lignin.
Here, we use a two-fold computational and experimental approach to investigate enzy-
matic saccharification time-courses for three cellulosic substrates (i.e. AVICEL, a mix-
ture of AVICEL with Organosolv lignin, and Sigmacell), and four plant-sourced lignocel-
lulosic biomasses following three different conditions for each of them (i.e. untreated,
OrganoCat pre-treated with a swelling step, and OrganoCat pre-treated without a
swelling step), making a total of fifteen samples. Considering the specific composition
of each substrate, the model successfully reproduces the saccharification dynamics for
each of the fifteen samples. It additionally provides values for the parameter Crystallinity
Fraction that faithfully replicate the substrate Crystallinity Indices experimentally deter-
mined by ssNMR. Importantly, we show that the Crystallinity Index of distinct biomasses
is differently impacted by swelling, while the sugar release is consistently impacted by
pre-treatment across biomasses. Eventually, both artificial cellulosic and plant-sourced
lignocellulosic biomasses demonstrate that the sugar release is the result of the com-
bination of the Crystallinity Fraction (the model parameter for experimentally measured
ssNMR Crystallinity Index) and the digestibility ratio, the model parameter that represents
in a coarse-grained manner complex spatial and structural features. Overall, our results
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stress the need for further experimental investigations that physically explain variations
in the digestibility of crystalline bonds across biomasses and pre-treatment conditions.
Additionally, we supplemented our work with theoretical investigations on a generic lig-
nocellulosic substrate to highlight the roles of various model parameters in a qualitative
manner.
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1 Introduction
Lignocellulosic biomass is an abundant source of raw material for the production of biofu-
els and other valuable chemicals. In biorefinery processes, it is broken down by enzymatic
saccharification to release the constituent simple monomeric sugars from the biopolymers.
However, its recalcitrance to enzymatic saccharification is a major challenge that has been
speculated to be impacted by various factors. Those range from the crystallinity of the sub-
strate, to the inhibitory effect of lignin on the enzymes. For reducing recalcitrance, and
hence enhancing saccharification yield, this biomass is subjected to chemical and physical
pre-treatments, such as: acidic treatments involving phosphoric, oxalic, acetic, or sulphuric
acids [1,2]; alkaline treatments involving slaked lime or ammonia fiber explosion/expansion
(AFEX) [3–6], and exposure to steam or liquid hot water [7,8]. Alternative methods for
instance rely on innovative enzymatic processes, e.g. the laccase system mediated by 1-
hydroxybenzotriazole [9]. In this study, we specifically employ an Organosolv-like OrganoCat
process, which involves a diluted acid, e.g. oxalic acid, 2,5-furandicarboxylic acid, or phos-
phoric acid to hydrolyse hemicelluloses, and in situ extract lignin into a second phase of 2-
methyltetrahydrofuran (2-MTHF) [10–12]. In addition to experimental approaches, several
models have been developed, at multiple scales, to understand the dynamics of enzymatic
saccharification and decipher the effect of various structural and compositional properties of
lignocellulose on its recalcitrance. Each of these approaches possesses its own set of advan-
tages and disadvantages, which have been nicely summarised in the comprehensive review by
Ciesielski et al. [13]. At the smallest scale, density functional theory (DFT), quantum mechan-
ics/molecular mechanics (QM/MM), and molecular dynamics (MD) are typical methods [14–
17]. They are used to address problems such as pyrolysis [18,19], the detailed structure and
properties of lignocellulosic biomass [20], enzyme mechanisms [21,22], and the effects of
lignin binding on cellulose and cellulase enzymes [17]. However, they are very demanding in
computational resources, and for instance are unable to depict biopolymers at the scale of sec-
onds. To counter these disadvantages, alternative approaches based on coarse-grained molec-
ular dynamics have been employed with beads or pseudo atoms as elementary units [23].
Instead, considering glucose molecules as elementary units, Kumar and Murthy implemented
Monte Carlo simulations to model the digestion of a cellulose bundle under the action of
endoglucanase (EG), cellobiohydrolase (CBH), and 𝛽-glucosidase (BGL) [24,25]. They con-
sidered a substrate of crystalline cellulose with hemicellulose and lignin, but did not study the
impact of crystallinity on the saccharification dynamics, and their simulation results displayed
significant discrepancies with experimental data. Using Ordinary Differential Equations,
Griggs et al. [26,27] developed a mechanistic and kinetic model to simulate the action of a
cocktail of cellulase enzymes on a purely cellulosic substrate, while this framework can also be
applied at a much higher (i.e. reactor) scale [28]. Their results showed the enzyme synergism,
a good agreement with experimental cellulose chain length distributions from literature, and
a semi-quantitative agreement with experimental saccharification time-courses. Notably, their
model nonetheless neglected all constituents other than cellulose. With agent-based models,
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Vetharaniam et al. [29] and Asztalos et al. [30] both investigated enzymatic synergism, while
respectively considering: (i) hemicellulosic sugars and crystalline cellulose; and (ii) inter-
chain hydrogen bond breaking, hydrolysis of glycosidic bonds, and adsorption and desorption
of the cellulases on the substrate. Yet, these studies oversimplify the substrate when neglecting
the essential constituent lignin, and considering a two-dimensional and purely cellulosic sub-
strate. To fill these gaps, and build a comprehensive model of lignocellulose and its enzymatic
saccharification dynamics, we previously introduced a spatially resolved stochastic biophys-
ical model of a lignocellulose microfibril [31], which has later on been made available as an
advanced free, open-source, and user-friendly Web Application https://predig.cs.hhu.de/ [32].
The model accounted for the detailed biomass structure, the specific action of the enzymes,
the crystallinity of cellulose and hemicellulose [33,34], and the role of lignin; and demon-
strated an exceptional ability in quantitatively reproducing experimental saccharification
time-courses.

Despite our previous work and all the advancements in the investigation of enzymatic
degradation of lignocellulosic biomass, it remains unclear how crystallinity in distinct
biomasses differently impacts on saccharification recalcitrance, and to which extent experi-
mental measurements of crystallinity can explain saccharification dynamics. To answer these
questions, in this study, we develop a two-fold (computational and experimental) approach
and focus on the extraction of glucose from various biomasses, with no pre-treatment and two
distinct pre-treatment conditions. Our findings suggest that the enzyme kinetics is strongly
affected by not only the type of substrate i.e. pure cellulose vs lignocellulose, but also the
pre-treatment each biomass is subjected to. Moreover, the model shows that even directly
accounting for ssNMR measurements of the crystallinity index is insufficient to accurately
reproduce the saccharification dynamics, which is however well captured when additionally
considering in the model that crystalline bonds in different biomasses have different propen-
sities to be digested, which impact on recalcitrance in a non-trivial way. Overall, we demon-
strate the importance of modelling for rationalising experimental data relating to the structure
and dynamics of plant biomass, a highly complex composite material.

2 Materials and methods
2.1 Extraction and analysis of lignocellulose
All chemicals were purchased from Carl Roth and Sigma-Aldrich (Germany) and used with-
out further purification. The plant biomasses were the same set as published earlier [1]. The
extraction and analysis procedures were carried out with slight modifications as outlined
in our previous study [35]. In summary, the biomasses were reduced in size before subse-
quent treatment by grinding to a fine powder using a ball mill M 400 (Retsch, Haan, Ger-
many) in a 50 mL metal beaker (30 s–1, 2 min). For each plant, 1 g of powder was extracted
in 50 mL reaction tubes, and the resulting pellet was collected by centrifugation at 3,234 g for
5 minutes. The alcohol-insoluble residue (AIR) was utilised to quantify the content of crys-
talline cellulose and lignin. Lignin was determined as acetyl bromide soluble lignin (ABSL)
and crystalline cellulose content was measured by the Updegraff method, like described by
Foster et al. [36,37]. De-starched AIR (d-AIR) was employed to assess the content of matrix
polysaccharides (MPS) through High-Performance Anion-Exchange Chromatography with
Pulsed Amperometric Detection (HPAEC-PAD) analysis [35]. The composition of each of the
samples is summarised in Table 1.
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Table 1. Composition of cellulosic and lignocellulosic biomasses in various conditions: untreated, OrganoCat
treated without swelling step (NS+OCAT), and OrganoCat treated with swelling step (YS+OCAT).
Biomass source Pre-treatment cellulose [%] lignin [%] MPS [%] acetate [%] total [%]
AVICEL NA 80.6± 0.78 11.3± 0.75* 3.7± 0.17 3.9± 0.09 99.5
Sigmacell NA 82.8± 0.82 9.2± 0.68* 4.0± 0.18 3.6± 0.13 99.2
Beech untreated 45.3± 1.7 24.7± 2.0 22.8± 3.5 5.1± 0.5 97.9

NS+OCAT 71.0± 1.5 21.8± 1.0 4.2± 0.5 0.0± 0.1 97.1
YS+OCAT 68.6± 1.5 23.8± 2.5 1.9± 0.1 0.0± 0.0 94.3

Miscanthus untreated 46.5± 4.3 24.4± 2.2 24.3± 3.6 2.7± 0.1 97.8
NS+OCAT 71.9± 2.0 20.9± 1.1 5.9± 0.8 0.0± 0.0 98.7
YS+OCAT 80.8± 2.7 19.7± 1.1 1.8± 0.1 0.1± 0.1 102.4

Sida (Sida hermaphrodita) untreated 44.7± 2.3 25.2± 1.2 17.6± 2.5 5.1± 0.2 92.6
NS+OCAT 62.1± 0.9 18.2± 1.5 6.6± 0.7 0.1± 0.2 87.1
YS+OCAT 68.5± 0.8 23.7± 0.5 3.4± 0.5 0.4± 0.1 96.0

Walnut untreated 31.4± 4.0 28.4± 1.9 15.7± 3.2 4.6± 0.2 80.2
NS+OCAT 50.9± 1.8 28.4± 2.5 6.8± 0.1 0.2± 0.1 86.3
YS+OCAT 50.0± 1.0 29.3± 0.3 3.5± 0.6 0.2± 0.1 83.0

Note: ∗Positive lignin results in AVICEL and Sigmacel are artifacts of the measurement and should not be considered.

https://doi.org/10.1371/journal.pone.0322367.t001

2.2 Lignocellulose fractionation by OrganoCat pulping
Without swelling. In a high-pressure reactor with a volume of 20 mL, 500 mg of lignocellulose
biomass, 5 mL of phosphoric acid (0.74 M) and 5 mL of 2-MTHF were introduced. To prevent
2-MTHF evaporation, the stainless-steel high-pressure reactor was sealed and pressurised
with 10 bar of argon. The mixture was stirred for 3 hours at 140○C. After cooling the reactor
to room temperature, the liquid phases were separated through decantation and the cellulose-
enriched solid pulp was filtered. Sugar concentrations were determined using HPAEC-PAD.
The solid residue was washed with distilled water until it reached a neutral pH and then dried
until a constant weight was achieved. Lignin was obtained by evaporating the 2-MTHF and
quantified through gravimetric analysis.

With swelling. In a high-pressure reactor with a volume of 20 mL, 500 mg of lignocellu-
lose biomass, 250 µL of ultra-pure water, and 250 µL of phosphoric acid (85 wt%) were com-
bined. This mixture was then heated to 80○C for 1 hour. Subsequently, 4.5 mL of ultra-pure
water and 5 mL of 2-MTHF were introduced. To prevent 2-MTHF evaporation, the stainless-
steel high-pressure reactor was sealed and pressurised with 10 bars of argon. The mixture was
stirred for 3 hours at 140○C. After cooling the reactor to room temperature, the liquid phases
were separated through decantation and the cellulose-enriched solid pulp was filtered. Sugar
concentrations in the aqueous phase were determined using HPAEC-PAD.The solid residue
was washed with distilled water until it reached a neutral pH and then dried until a con-
stant weight was achieved. Lignin was obtained by evaporating the 2-MTHF and quantified
through gravimetric analysis.

The OrganoCat treatment applied to the lignocelluloses did not result in instantaneous
expansion and does not have a significant effect on the cellulose fibres, unlike for instance
steam explosion, where intense heating leads to the explosive expansion of vapour, causing
cell damage.

2.3 Enzymatic hydrolysis of cellulose pulp
Enzymatic hydrolysis and its subsequent analysis were performed following the protocols
detailed in our previous study [38]. In brief, each of the cellulosic or lignocellulosic biomasses
was suspended at a concentration of 20 g/L in a 0.1 M sodium citrate buffer with a pH of 4.5
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(total volume of 1 mL). This suspension was maintained at a temperature of 50○C for specified
amount of time. To initiate the enzymatic reaction, Accellerase®-1500 (containing 60 FPU/mL
and 82 CBU/mL, Genencor, The Netherlands) was added at a volume of 1 vol%, relative to
the buffer. Samples (0.3 mL) were withdrawn from the reactions at indicated times, heated
to 100○C for 5 minutes to halt the enzymatic process, and subsequently stored at –20○C until
the colourimetric analysis was carried out. Sugar release was determined by employing the
PAHBAH (4-hydroxybenzoic acid hydrazide) method, following the procedure outlined by
Lever et al. [39]. The resulting reaction mixtures were diluted as needed to be in the range of
the calibration curve. The absorbance was measured at 410 nm using a BioTek Power Wave
HT UV/Vis spectrometer. All experiments were performed as single trials or with replicates,
as specified in the text.

2.4 Crystallinity measurement via ssNMR
For solid-state NMR measurements, ca. 30 mg of the sample were packed into Bruker magic-
angle spinning (MAS) rotors with an outer diameter of 3.2 mm. 13C Cross-Polarisation (CP)
MAS spectra were recorded on a 14.1 T (600 MHz 1H frequency) Bruker Avance wide bore
spectrometer equipped with a 3.2 mmMAS triple resonance 1H, 13C, probe and a 14.1 T (600
MHz 1H frequency) Bruker AVANCE NEO spectrometer equipped with a triple resonance
HCN 3.2 mmMAS Efree probe. The CP contact time was 500 𝜇s, the MAS spinning speed
was 11 kHz. Spinal-64 1H decoupling (RF field of 85 kHz) was applied during acquisition.
Spectra were referenced externally to Sodium trimethylsilylpropanesulfonate (DSS) using
adamantane as a secondary standard (the low frequency peak was set to 31.4 ppm).

2.5 Stochastic simulation model
Our theoretical model [31] employs a Gillespie algorithm (see Sect 2.6 for details) to stochas-
tically simulate the enzymatic saccharification process of a lignocellulose microfibril. It rep-
resents in silico the distinct bio-polymers (namely cellulose, hemicellulose, and lignin) con-
stituting the biomass, as well as the three-dimensional configuration of the substrate. The
physical structure of the substrate is depicted as a hexagonal-shaped core bundle of cellulose
polymer chains of length 200 bonds, surrounded by two layers of randomly positioned hemi-
cellulose and lignin polymers, as seen in Fig 1. The number of cellulose chains that form the
core of a microfibril has been strongly debated for decades, and it is widely accepted that they
form in multiples of six, i.e. 36, 24, or 18, with a recent preference for the latter one [40,41].
Since this number is known to vary for different species and developmental stages [41–43],
and that the conclusions from the model we present here are not impaired by these consid-
erations, we choose to simulate the system for eighteen cellulose chains. The inner polymer
bonds are shielded from enzymatic action by the outer chains, until those get digested, giving
physical access to the enzymes. Besides, the lignin and hemicellulose layers do not completely
surround the cellulose core, but possess some gaps, as seen in Fig 1.

Biomass crystallinity is also known to have a strong impact on enzymatic saccharifica-
tion. It is well-established that cellulose possesses a crystalline arrangement that negatively
impacts saccharification. Even though there is no direct evidence of hemicellulose crys-
tallinity, xylans have been known to partially bind to cellulose microfibrils, adopting a semi-
crystalline arrangement [33]. It has also been suggested that hemicellulose adsorption to cel-
lulose interferes with the saccharification process [34]. Furthermore, the hemicelluloses of
the biomasses considered in our study are predominantly constituted of xylose. Thus, in our
model, we consider both crystalline and amorphous regions for both cellulose and hemicel-
lulose, so that the crystalline bonds are more difficult to enzymatically digest as compared to
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Fig 1. Perspective view of the modelled lignocellulose microfibril, with lignin in blue, hemicellulose in yellow,
and cellulose in green. Both hemicellulose and cellulose can be either crystalline (dark colour) or amorphous (light
colour), with amorphous regions typically located at the boundaries of the microfibril, or embedded in the crystalline
region as ‘defect’ patches. These defects may for instance arise as a result of pre-treatments.

https://doi.org/10.1371/journal.pone.0322367.g001

their amorphous counterparts. Crystallinity versus amorphousness is quantified using two
distinct parameters: (i) the Crystallinity Fraction (noted CF) quantifies the number of crys-
talline bonds over the total number of bonds of a certain type (i.e. cellulose or hemicellu-
lose), and (ii) the digestibility ratio (noted rc,a) describes how much harder it is to digest a
crystalline bond as compared to its amorphous counterpart, for a certain bond type (i.e. cel-
lulose or hemicellulose). For instance, when rc,a = 0, it implies that crystalline bonds are not
digestible at all, whereas when rc,a = 1, crystalline bonds are digested at the same rate as amor-
phous ones. We assume that the crystallinity of hemicellulose is induced by its direct vicinity
to the highly ordered and crystalline cellulose chains. We also account for the non-productive
adsorption of enzymes on lignin, independently of their specific type [44–47].

The microfibril is subjected to digestion by an enzyme cocktail consisting of endoglu-
canases (EGs), cellobiohydrolases (CBHs), 𝛽-glucosidases (BGLs), and hemicellulases (HCs).
Endoglucanases can digest any exposed bond in the bulk of a cellulose chain, except the two
endmost ones, at each end of the polymer chain [48]. Cellobiohydrolases attach to glucan
chains’ ends from which they processively cleave-off cellobiose units [49–51]. 𝛽-glucosidases
complete the saccharification process by splitting cellobiose into two glucose monomers [52,
53]. In our model, we account for the cellulases’ specific mode of action, unlike for the hemi-
cellulases that are considered as non-specific for the sake of simplicity, and capable of digest-
ing any exposed digestible hemicellulosic bond. Our model also accounts for end product
inhibition of the cellulases, such that free glucose and cellobiose in the reaction mixture have
a detrimental effect on their activity. More precisely, these saccharification end products can
bind to the active catalytic site of cellulases, and render them ineffective [54]. We assume that
free glucose and cellobiose reduce the effective concentration of the enzymes available for sac-
charification, such that both inhibit EG and CBH, while BGL is only inhibited by glucose, as
follows:

[EG] =[EG]0 – 𝜔cbs
EG

[EG]0[cbs]
[EG]0 + [CBH]0 + [cbs]

(1)

– 𝜔glc
EG

[EG]0[glc]
[EG]0 + [CBH]0 + [BGL]0 + [glc]

,
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[CBH] =[CBH]0 – 𝜔cbs
CBH

[CBH]0[cbs]
[EG]0 + [CBH]0 + [cbs]

(2)

– 𝜔glc
CBH

[CBH]0[glc]
[EG]0 + [CBH]0 + [BGL]0 + [glc]

,

[BGL] =[BGL]0 – 𝜔glc
BGL

[BGL]0[glc]
[EG]0 + [CBH]0 + [BGL]0 + [glc]

, (3)

where, on the right-hand side of the equations, [y]0 denotes the concentration of the cellu-
lases (i.e. y = EG, CBH, or BGL) if inhibition would not take place, and [x] denotes the time
varying concentration of the inhibitors (i.e. x = glc for glucose and cbs for cellobiose). The
parameter 𝜔x

y quantifies the inhibition strength of the inhibitor x on the enzyme y, and can
vary between 0 and 1. These equations account for the competition of distinct inhibitors
for the same active site of an enzyme, and conversely, for the sharing of common pools of
inhibitor molecules by distinct enzymes.

In this study, we expand our model to additionally account for a higher level of detail relat-
ing to the crystalline and amorphous regions of the substrate. In the earlier version of the
model [31], we assumed a simplistic homogeneous representation of cellulose and hemicellu-
lose crystallinity, with the crystalline bonds being only located in the mid-length region of the
microfibril, and the amorphous ones at the periphery. Nonetheless, during material prepara-
tion and pre-treatment (e.g. grinding to powder, and OrganoCat) the ordered structure of the
crystalline cellulose and hemicellulose polymers may become disrupted, giving rise to random
amorphous defects. The occurrence of such defects and disruption of crystallinity due to pre-
treatments and mechanical stresses have also been reported in earlier studies [55–57]. These
defects appear in the outer polymer chains of the microfibril, which are most exposed. In this
expanded model, two independently adjustable parameters characterise the mean size (𝜇defect)
and the number (Ndefect) of such defects. 𝜇defect can vary in the range 0–0.5, denoting which
fraction of the amorphous bonds in a polymer chain is embedded as defects in the crystalline
region, instead of being located at the ends of the chain. Ndefect varies in the range 0–1, quanti-
fying which fraction of the outer polymer chains of a microfibril contains defects. Fig 1 shows
a schematic representation of the entire microfibril, including amorphous defects located in
the crystalline cellulose and hemicellulose regions. The distinct model parameters and their
respective values are listed in the Sect 4.

2.6 Reminder of Gillespie algorithm
The enzymatic saccharification of the lignocellulose microfibril is simulated using a Gille-
spie algorithm, which is a common technique for implementing stochastic simulations. It
mimics the stochastic nature of the system by considering a sequence of randomised events.
Here, those can be the binding of enzymes to lignin, adsorption of CBH to a free polymer
end, or reactions of enzymatic digestion. In our implementation of the Gillespie algorithm,
for improved computational efficacy, we keep track of all and only the possible reactions, by
accounting for the bond accessibility and steric hindrance. At each time step, both the reac-
tion to take place and its duration are randomly selected, in a manner that reflects the reac-
tion’s likelihood of occurrence, which can, for instance, depend on the substrate availability,
the enzyme availability and the enzyme kinetics. The simulation lasts until the chosen amount
of events is attained, or until all of the digestible substrate has been digested.
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2.7 Fitting algorithm
In addition to our stochastic simulation model, we also developed a parameter fitting algo-
rithm which enables us to search the parameter space to reproduce experimental saccharifi-
cation time-course data. It proceeds through generations and sub-generations, with param-
eters randomly adjusted within specified ranges. The difference between experimental data
and simulation curves (averaged over several runs) is recorded. If the difference decreases
within a generation, the sub-generation with the lowest variance becomes the basis for the
next generation. If the difference increases, the previous generation’s parameters are used
again as a starting point for random adjustments. This mix of directed and random search
ultimately converges to an optimal fit. The minimum difference across all generations defines
the best fit for a particular set of experimental data. In this study, the model input parameters
for the composition of the substrates are fixed to the experimentally measured values listed
in Table 1. Then, in order to reproduce both the saccharification time-courses and the exper-
imentally measured Crystallinity Indices, we fit the same kinetic parameters for all samples
under a given pre-treatment condition (i.e. enzyme kinetic rates and end-product inhibition
parameters), while the substrate related parameters are substrate specific (i.e. crystallinity
fraction and digestibility ratio).

3 Results
3.1 Artificial cellulosic substrates
Fig 2 displays the saccharification time-courses in three cases, i.e. for Sigmacell, AVICEL, and
a (1:1) mixture of AVICEL with Organosolv lignin, with the experimental data being rep-
resented by points and the simulation results by dashed lines. We observe that the presence
of Organosolv lignin in the reaction mixture decreases the overall sugar yield in compari-
son to pure AVICEL. In contrast to plant biomass, in which lignin is connected to cellulose,
and hence physically blocks the access of cellulases to the cellulose polymers, the Organo-
solv lignin added to the cellulose in this case is not. To capture this, instead of a structured

Fig 2. Enzymatic saccharification of cellulosic substrates. (a) Sigmacell; (b) in blue, AVICEL; in red, AVICEL and Organosolv lignin mixture (1:1).
Experimental data are shown as points. Model simulation results are shown as dashed lines. The stochastic model fairly reproduces the saccharification
dynamics in each case over the entire time-course.

https://doi.org/10.1371/journal.pone.0322367.g002
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microfibril like shown in Fig 1, we consider polymers freely floating in the solution, where
all their bonds can be easily accessed. In this configuration, lignin can still inhibit the cellu-
lases by non-productively adsorbing on their surface, which we also represent in our model.
Together panels (a) and (b) in Fig 2 show that the model is able to fairly reproduce the experi-
mental time-courses, for each of the three cases considered.

As can be seen in Table 2, in the three cases considered in Fig 2, the Crystallinity Frac-
tion of the model (averaged over the substrate) also fairly reproduces the Crystallinity Indices
obtained by ssNMR. Since crystallinity in the model is quantified by two parameters: (i) the
Crystallinity Fraction (noted CF) and (ii) the digestibility ratio (noted rc,a) (as described in
Sect 2.5), this confirms that ssNMR quantifies the abundance of crystalline bonds in the total
substrate, rather than their propensity to be digested. It is also interesting to note that while
the Crystallinity Fraction of AVICEL (53%) is much higher than that of Sigmacell (22%),
their sugar yields from cellulose at 48 hours are similar (86.6%). This non-trivial observation
is well rationalised by the digestibility ratio of cellulose (cellu rc,a) determined by the model.
For AVICEL, rc,a = 0.60, while for Sigmacell, rc,a = 0.20. It means that, the crystalline bonds
are much harder to digest than the amorphous ones in Sigmacell as compared to AVICEL.
This explains why a substrate with less crystalline bonds that are harder to digest (Sigmacell)
releases the same amount of sugar like a substrate with more crystalline bonds that are eas-
ier to digest (AVICEL). This signifies that solely the measurement of the Crystallinity Index
is not reflective of the amount of sugar being released from the substrate, which is instead
influenced by a combination of the two factors: how much of the crystalline bonds are present
(experimentally measured by Crystallinity Index and represented by the model parameter
Crystallinity Fraction), and how hard they are to digest (represented by the model parameter
digestibility ratio rc,a).

3.2 Plant biomass lignocellulosic substrates
In Table 2, we also consider various plant biomasses (i.e. beech wood, miscanthus, sida
hermaphrodita (sida), and walnut shells), and conditions (i.e. no pre-treatment, OrganoCat

Table 2. Sugar yield from cellulose at 48 hours, experimentally measured Crystallinity Index (by ssNMR), and
model parameters Crystallinity Fraction and digestibility ratio, from simulations that best fit saccharification
time-courses in Fig 3.
Biomass source Pre-treatment Sugar yield from

cellulose at 48 hrs [%]
Crystallinity Index
from ssNMR [%]

Crystallinity
Fraction [%]

cellurc,a

Sigmacell N.A 86.6± 3.8 22.0± 0.8 22.0 0.20
AVICEL N.A 86.6± 1.1 53.0± 2.0 55.0 0.60
AVICEL and
Organosolv Lignin

N.A 72.8± 3.3 53.0± 2.0 55.0 0.40

Beech wood untreated 9.5± 0.2 21.0± 0.8 22.0 0.005
NS+OCAT 50.8± 0.4 43.0± 1.6 45.0 0.04
YS+OCAT 40.9± 0.6 51.0± 1.9 45.0 0.05

Miscanthus untreated 11.5± 0.6 29.0± 0.8 31.0 0.05
NS+OCAT 81.9± 0.3 45.0± 1.7 43.0 0.30
YS+OCAT 47.0± 4.4 30.0± 1.1 33.0 0.001

Sida (Sida
hermaphrodita)

untreated 12.4± 0.5 23.0± 0.9 22.0 0.05
NS+OCAT 87.5± 4.3 38.0± 1.4 37.0 0.50
YS+OCAT 40.4± 1.4 34.0± 1.3 36.0 0.001

Walnut shells untreated 3.0± 0.2 26.0± 1.0 29.0 0.0001
NS+OCAT 41.0± 2.5 37.0± 1.4 37.0 0.01
YS+OCAT 22.6± 1.0 47.0± 1.7 45.0 0.0001

https://doi.org/10.1371/journal.pone.0322367.t002
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Fig 3. Enzymatic saccharification time-courses showing sugar release from cellulose versus the enzyme incubation time, for (a) beech (beech
wood), (b) misc (miscanthus), (c) sida (Sida hermaphrodita), and (d) walnut (walnut shell) biomasses. Experimental data are shown as points and
simulation results as dashed lines. Untreated biomass is in green, OCAT without swelling in red, and OCAT with swelling in blue.

https://doi.org/10.1371/journal.pone.0322367.g003

pre-treatment without swelling (NS+OCAT), and OrganoCat pre-treatment with swelling
(YS+OCAT)). We observe that the measured Crystallinity Indices from ssNMR for the
untreated biomasses are always lower than that of the OrganoCat pre-treated samples. This
is expected to be induced by the pre-treatment process, which removes a majority of the
hemicelluloses from the biomass, and thereby amorphous polymers, leading to an increase
in crystallinity of the overall substrate. For miscanthus and sida, the additional swelling step
(YS+OCAT compared to NS+OCAT) swells crystalline cellulose and reduces the Crystallinity
Indices. For beech wood and walnut shells, instead, during swelling amorphous cellulose is
partially hydrolysed, which increases the overall Crystallinity Indices. To evaluate if any cor-
relation can be drawn between the Crystallinity Index measured by ssNMR and the 48-hour
sugar release (see Table 2), we rank them as follows:
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For untreated biomass:
CI
beech wood (21.0 ± 0.8) < sida (23.0 ± 0.9) <walnut shells (26.0 ± 1.0) <miscanthus

(29.0 ± 0.8)
48-hour sugar release
sida (12.4 ± 0.5)≈miscanthus (11.5 ± 0.6) > beech wood (9.5 ± 0.2) >walnut shells

(3.0 ± 0.2)
For NS+OCAT:

CI
walnut shells (37.0 ± 1.4)≈ sida (38.0 ± 1.4) < beech wood (43.0 ± 1.6)≈miscanthus

(45.0 ± 1.7)
48-hour sugar release
sida (87.5 ± 4.3) >miscanthus (81.9 ± 0.3) > beech wood (50.8 ± 0.4) >walnut shells

(41.0 ± 2.5)
For YS+OCAT:

CI
miscanthus (30.0 ± 1.1) < sida (34.0 ± 1.3) <walnut shells (47.0 ± 1.7) < beech wood

(51.0 ± 1.9)
48-hour sugar release
miscanthus (47.0 ± 4.4) > beech wood (40.9 ± 0.6)≈ sida (40.4 ± 1.4) >walnut shells

(22.6 ± 1.0).
It is therefore apparent that, for the different biomasses considered, there is no correlation

between the ranking of the measured Crystallinity Indices and their respective saccharifica-
tion yields, which is another clue that the Crystallinity Index measured via ssNMR is insuffi-
cient to completely capture the biomass recalcitrance. Instead, one must also account for the
digestibility ratio (rc,a) of the crystalline cellulose, that varies amongst biomasses.

Fig 3 displays the enzymatic saccharification time-courses of biomass from: (a) beech
wood, (b) miscanthus, (c) sida, and (d) walnut shells, with experimental data being shown
as points and simulation results as dashed lines. In each case, we observe that the untreated
biomasses (in green) have the lowest sugar release; whereas the OrganoCat pre-treated ones
without swelling (NS+OCAT, in red) have the highest, and the OrganoCat pre-treated ones
with swelling (YS+OCAT, in blue) lie in between. In each case, the model fairly reproduces
the experimental saccharification time-courses, while it takes into account the specific com-
position of the substrate (detailed in Table 1), and predicts a value for the model parameter
Crystallinity Fraction that matches well the experimental Crystallinity Index, excepted for
OrganoCat pre-treated beech wood with swelling (detailed in Table 2). In this case, the Crys-
tallinity Fraction provided by the model is roughly 6% below the experimental Crystallinity
Index. However, one could note that the impact of swelling on OrganoCat pre-treated beech
wood is unique as compared to the other biomasses. Beech wood shows the lowest decrease in
sugar release from cellulose when comparing NS+OCAT and YS+OCAT (i.e. ca. 9.9%), while
this amounts to ca. 34.9% for miscanthus, ca. 47.1% for sida, and ca. 17.4% for walnut shells.
The uniqueness of beech wood is also reflected in the fitted value of the cellulose digestibil-
ity ratio (cellu rc,a), which unlike for other biomasses, is almost the same when comparing
NS+OCAT and YS+OCAT conditions.

3.3 The digestibility ratio (rc,a)
In Table 2, considering all the samples investigated in this study, the cellu rc,a values indicate
that the crystalline bonds in sida (NS+OCAT) are the easiest to enzymatically digest, while

PLOS One https://doi.org/10.1371/journal.pone.0322367 September 5, 2025 11/ 23

https://doi.org/10.1371/journal.pone.0322367


ID: pone.0322367 — 2025/9/1 — page 12 — #12

PLOS One Stochastic model highlights the impact of crystallinity on saccharification dynamics

Fig 4. Simulated effect of end product inhibition on saccharification. (a) Saccharification time-courses with inhibition by both cellobiose and glu-
cose. Each dashed line corresponds to a specific value for the inhibition factors, that are kept equal to one another. The inhibition factors are varied
from𝜔x

y = 0 to𝜔x
y = 1 in steps of 0.2, where x = cbs, glc and y = EG,CBH,BGL. (b) Sugar released from cellulose versus𝜔x

y at different time points
along the simulated saccharification time-course. Each point type corresponds to a specific time.

https://doi.org/10.1371/journal.pone.0322367.g004

those in walnut shells (untreated and YS+OCAT) are the hardest. Interestingly, this corre-
lates with highest sugar conversion at 48 hours for sida and lowest one for walnut shells. Addi-
tionally, all the samples showing more than 70% of sugar yield from cellulose at 48 hours
have a cellu rc,a value in the range 0.2–0.6, while in all other cases cellu rc,a is at least one order
of magnitude lower. It is therefore apparent that distinct samples (considering biomass and
pre-treatment) have crystalline bonds with largely different digestibility ratios (rc,a), which
strongly impacts, together with the Crystallinity Fraction, on the saccharification dynam-
ics. Moreover, in the case of plant-sourced lignocellulosic biomasses, the digestibility ratios
cellu rc,a follow the trend: NS+OCAT > untreated ≥ YS+OCAT, which suggests that cellu rc,a is
a signature of the impact of the pre-treatment on the biophysical properties of the crystalline
polymers.

It must be made explicit that the physical meaning of rc,a is undoubtedly complex. Indeed,
even though in the same chemical environment the same bonds need the same energy to
be cleaved, there might be other factors such as the detailed spatial and structural arrange-
ments of the molecules in and around the crystalline cellulose bonds which contribute to the
biomass recalcitrance. For instance, the polysaccharide orientation, lignin composition and
spatial arrangement of aromatic rings, lignin-carbohydrate-complexes, hemicellulosic decora-
tions, or kinks in the linear arrangement of the cellulose chains may contribute to uneasiness
for the enzymes to access and digest crystalline cellulose bonds. These features are neither
accounted for in the model nor measured experimentally, and so, they might be captured, in
a coarse-grained manner, by rc,a.

Noticeably, the model can also reproduce the experimental saccharification time-courses
for the different biomasses and pre-treatment conditions using the same value of the
digestibility ratio or the same value of the enzyme kinetics for all samples. However, then, the
predicted values of the model parameter Crystallinity Fraction are very far from the experi-
mental Crystallinity Indices. Thus, we instead have digestibility ratios that are specific for each
biomass and pre-treatment, and enzyme kinetic rates that are common to all samples under
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Fig 5. Simulated effect of the enzymes’ size on the saccharification dynamics. Sugar yield from cellulose at 48
hours decreases with increasing enzymes’ size, following a Gaussian trend (G = 83.32 ± 1.65, 𝜇 = 14.62 ± 2.25, 𝜎 =
36.43± 2.06).

https://doi.org/10.1371/journal.pone.0322367.g005

a given pre-treatment condition. This confirms the impact of pre-treatments on the material
properties and the consequent ability of an enzyme cocktail to digest it.

3.4 Further insights from the model
Apart from the crystallinity parameters (Crystallinity Fraction and digestibility ratio), other
model parameters can have an impact on the saccharification dynamics [58]. For instance,
below we illustrate the role of the end product inhibition and enzymes’ size, before summaris-
ing the overall phenomenology.

3.4.1 Impact of cellulase inhibition. Fig 4 shows the effect of the inhibition of cellulases
by their end products cellobiose and glucose on the simulated saccharification dynamics. All
the inhibition factors 𝜔x

y (see Sect 2.5) are kept equal to each other, and simultaneously var-
ied. All the other parameters are kept fixed to the best-fitted values for the case of miscant-
hus OrganoCat pre-treated without swelling (which we arbitrarily picked). In Fig 4a, as one
might intuitively expect, we observe that, as the value of the inhibition factor increases, the
sugar yield from cellulose decreases. In Fig 4b, we study the effect of the end-product inhibi-
tion factors 𝜔x

y on the sugar release at different points of the time-course. At earlier times, an
increase in the inhibition causes a pseudo-linear decrease in the sugar release. At later times,
two regimes are observed: first a very slow decrease of the sugar release with increasing 𝜔x

y ,
second, a sharp decrease of the sugar release with increasing 𝜔x

y . Additionally, when compar-
ing the sugar yield from cellulose at 𝜔x

y = 0 and 𝜔x
y = 1, we clearly observe that this difference

is stronger for late time points than for early time points, which highlights the cumulative
impact of inhibition throughout the saccharification time-course. We also tested the cases
where the only inhibitor was either cellobiose or glucose (data not shown). We observed that
inhibition by only cellobiose has a negligible effect on the saccharification dynamics, since
it does not accumulate and is instead readily digested into glucose by BGL. A very similar,
but weaker, profile like in Fig 4 is observed when only glucose inhibits, hence, we deduce that
inhibition by cellobiose reinforces that by glucose.
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Fig 6. Representative plot showing the impact of several model parameters on the simulated saccharification
time-courses, in comparison to a control case (purple line), considering a generic lignocellulose substrate.The
depicted parameters are: the enzyme reaction rates (noted Kenzyme, pink line), the end product inhibition parameters
(noted𝜔x

y , blue line), the enzymes’ size (noted renzyme, orange line), and the substrate crystallinity parameters (noted
CF and rc,a, green line).

https://doi.org/10.1371/journal.pone.0322367.g006

3.4.2 Effect of enzymes’ size. Fig 5 shows the effect of varying enzymes’ size on the sim-
ulated saccharification dynamics. All the other model parameters are fixed to the best-fitted
values for miscanthus OrganoCat pre-treated without swelling (which we arbitrarily picked).
The enzymes are approximated as hard spheres, with a radius of renzyme, such that they inter-
act among themselves and with the substrate through excluded-volume interactions. Due to
their intrinsic volume, both cellulases and hemicellulases may have limited access to their
respective substrate because it is being shielded by surrounding non-substrate polymers. Fur-
thermore, processive enzymes (i.e. CBH) that remain attached to the microfibril for a while,
prevent other enzymes from approaching and digesting bonds. As a consequence, we observe
that steric hindrance increases with the enzyme radius, which directly slows down the saccha-
rification process. The sugar yield from cellulose at 48 hours can be fitted with the right side of
a Gaussian distribution, using the parameters stated in the caption of Fig 5.

3.4.3 Overall phenomenology. Fig 6 illustrates how the various model parameters affect
the saccharification time-courses for a generic lignocellulose substrate. We assume, for each
line, the variation of only the marked parameter, with respect to the control, while all the
other parameters, including the substrate composition, are considered to be constant. The sac-
charification yield increases with the increase in the enzyme reaction rates (Kenzyme), or with
the decrease in the digestibility ratio (rc,a). Conversely, the saccharification yield decreases
with the increase of the end product inhibition (𝜔x

y), or with that of the Crystallinity Fraction
(CF), or with that of the enzymes’ radius (renzyme). These generic considerations are presented
for a control sample, whose substrate composition is kept fixed. In order to fully rationalise
experimental saccharification time-courses (such as in Fig 3), one should be reminded that
the variation in substrate composition can also play a significant role on its recalcitrance, in
particular when considering biomass from different sources.

4 Discussion
In this study, we use a two-fold computational and experimental approach to investigate the
enzymatic saccharification of not only purely cellulosic substrates (i.e. AVICEL and Sigma-
cell) but also lignocellulosic biomasses from four different plant sources (i.e. beech wood,
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miscanthus, sida, and walnut shells), that we additionally examine under three distinct con-
ditions (i.e. untreated, OrganoCat pre-treated without swelling, and OrganoCat pre-treated
with swelling). We employ an upgraded version of our earlier published stochastic biophys-
ical model [31] to reproduce the experimental saccharification time-courses of the fifteen
samples while taking into account their specific composition. Our best-fits provide values
for the model parameter Crystallinity Fraction that match well the Crystallinity Indices
experimentally measured by ssNMR.The enzymatic saccharification of AVICEL in solution
with Organosolv lignin highlights the inhibitory effect of lignin on saccharification due to
its adsorption on the enzymes, even though it is not physically connected to the cellulosic
substrate in that case. For the four plant-sourced biomasses, the pre-treatment consistently
impacts on the sugar release. Compared to untreated biomasses, OrganoCat pre-treatment
brings about a many-fold increase in the saccharification yield. Untreated biomasses have
the lowest yield, OrganoCat pre-treated with swelling the intermediate one, and OrganoCat
pre-treated without swelling the highest one.

The Crystallinity Index of distinct plant-sourced biomasses can be differently affected
by swelling, that can either increase or decrease it. Additionally, with both plant-sourced
biomasses and purely cellulosic substrates (i.e. AVICEL and Sigmacell), we highlight that
the Crystallinity Index is not correlated to the sugar release that is instead determined by a
combination of the Crystallinity Fraction (that is the model parameter for the experimen-
tally determined Crystallinity Index) and the digestibility ratio. This clearly suggests that the
Crystallinity Index measured by ssNMR is important but insufficient to predict the saccha-
rification yield of a given biomass. Therefore, the digestibility ratio appears as an essential
parameter to rationalise the saccharification dynamics, and while it can be different for dis-
tinct biomasses, it emerges as a footprint of the impact of pre-treatments on the material. Yet,
its exact physical meaning is undoubtedly complex, and can be considered as a coarse-grained
representation of various spatial and structural features of the material that explain why crys-
talline bonds are more or less easily digested in distinct biomasses. Other model parameters
also impact on the saccharification dynamics, in particular the end product inhibition and the
enzyme size. Although resulting from very distinct mechanisms, based on the simulations, we
show that either an increase in end product inhibition or enzyme size consistently reduces the
saccharification yield in a non-trivial fashion.

Overall, our study illustrates the benefit of modelling to rationalise complex experimen-
tal data related to the dynamics of lignocellulose biomass saccharification. Importantly, it also
stresses the need for further experimental investigations towards deciphering the fine struc-
tural properties of the material that explain why the digestibility of crystalline regions vary
that much across biomasses and pre-treatment conditions. In this perspective, complemen-
tary approaches could be based on lower scale modelling, such as atomistic-level Molecular
Dynamics or Density Field Theory.
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Appendix
Glossary
List of symbols

rc,a Ratio of digestibility of the crystalline to the amorphous bonds
CF Crystallinity fraction
[EG] Concentration of endoglucanase
[EG]0 Concentration of endoglucanase as if no inhibition would take place
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[CBH] Concentration of cellobiohydrolase
[CBH]0 Concentration of cellobiohydrolase as if no inhibition would take place
[BGL] Concentration of 𝛽-glucosidase
[BGL]0 Concentration of 𝛽-glucosidase as if no inhibition would take place
𝜔cbs
EG Inhibition factor for cellobiose on endoglucanase

𝜔cbs
CBH Inhibition factor for cellobiose on cellobiohydrolase

𝜔glc
EG Inhibition factor for glucose on endoglucanase

𝜔glc
CBH Inhibition factor for glucose on cellobiohydrolase

𝜔glc
BGL Inhibition factor for glucose on 𝛽-glucosidase
[cbs] Concentration of free cellobiose in the system
[glc] Concentration of free glucose in the system
renzyme Radius of the enzymes (hard-spheres)
𝜇defect Mean size of amorphous defects in crystalline cellulose and hemicellulose
Ndefect Number of amorphous defects in crystalline cellulose and hemicellulose

List of abbreviations
DP: degree of polymerisation, EG: endoglucanase, CBH: cellobiohydrolase, BGL: 𝛽-
glucosidase, HC: hemicellulase, MLG: mixed-linkage glucan, DFT: density functional the-
ory, MD: molecular dynamics, MPS: matrix polysaccharide, AIR: alcohol insoluble residue,
ssNMR: solid-state nuclear magnetic resonance, OCAT: OrganoCat, OCAT+NS: OrganoCat
No-Swelling, OCAT+YS: OrganoCat Yes-swelling.

Input parameters and files of the stochastic biophysical model
Themodel source code available in the GitLab repository is organised such that input
parameters are read as text files, which are in the folder ‘Params’. These files are named
‘kinetic_parameters.txt’ and ‘initial configuration_parameters_*.txt’. The parameters are listed
as comments at the bottom of the respective files for ease of the user. We also list them below.
Parameters listed in the input file ‘kinetic_parameters.txt’:

ï EG Kcat

parameter #1
Endoglucanase catalytic constant.
Units: 1/s. Typical Range: 0.001-1000.

ï EG Km

parameter #2
Endoglucanase Michaelis-Menten constant.
Units: mM. Typical Range: 0.001-1000.

ï CBH processive digestion rate
parameter #3
Reaction rate of cellobiohydrolase processive action.
Units: reactions/hour. Typical Range: 10-10,000.

ï BGL Kcat

parameter #4
𝛽-glucosidase catalytic constant.
Units: 1/s. Typical Range: 0.001-1000.

ï BGL Km

parameter #5
𝛽-glucosidase Michaelis-Menten constant.
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Units: mM. Typical Range: 0.001-1000.
ï XYL Kcat

parameter #6
Xylanase catalytic constant.
Units: 1/s. Typical Range: 0.001-1000.

ï XYL Km

parameter #7
Xylanase Michaelis-Menten constant.
Units: mM. Typical Range: 0.001-1000.

ï CBH Kcat (attachment reaction)
parameter #8
Cellobiohydrolase catalytic constant.
Units: 1/s. Typical Range: 0.001-1000.

ï CBH Km (attachment reaction)
parameter #9
Cellobiohydrolase Michaelis-Menten constant.
Units: mM. Typical Range: 0.001-1000.

ï inhibition binding affinity of cellobiose to EG
parameter #10
𝜔cbs
EG

Units: none. Range: 0-1.
ï inhibition binding affinity of cellobiose to CBH

parameter #11
𝜔cbs
CBH

Units: none. Range: 0-1.
ï inhibition binding affinity of glucose to EG

parameter #12
𝜔glc
EG

Units: none. Range: 0-1.
ï inhibition binding affinity of glucose to CBH

parameter #13
𝜔glc
CBH

Units: none. Range: 0-1.
ï inhibition binding affinity of glucose to BGL

parameter #14
𝜔glc
BGL

Units: none. Range: 0-1.
ï Enzyme size: radius

parameter #15
renzyme

Units: nm. Value used: 2.5 (based on formula 2.2 in [59] and enzyme molecular masses
from BRENDA.)

Parameters listed in the input file ‘initial_configuration_parameters_*.txt’:

ï mode_code
parameter #1
Determines the shape of the microfibril and the number of cellulose polymers present.
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Range: 1-5 (integers only). Mode code = 1 or 2, 24 polymers; Mode code = 3 or 4 (used
here), 18 polymers; Mode code = 5, 36 polymers.

ï pct_EG
parameter #2
Relative fraction of endoglucanase in the enzyme cocktail.
Units: none. Value used: 0.135 (based on the most efficient enzyme cocktail design from
literature [60,61] and calculations in [31]). Range: 0-1.

ï pct_CBH
parameter #3
Relative fraction of cellobiohydrolase in the enzyme cocktail.
Units: none. Range: 0-1. Value used: 0.353 (based on the most efficient enzyme cocktail
design from literature [60,61] and calculations in [31]).

ï pct_BGL
parameter #4
Relative fraction of 𝛽-glucosidase in the enzyme cocktail.
Units: none. Range: 0-1. Value used: 0.100 (based on the most efficient enzyme cocktail
design from literature [60,61] and calculations in [31]).

ï pct_XYL
parameter #5
Relative fraction of xylanase in the enzyme cocktail.
Units: none. Range: 0-1. Value used: 0.412 (based on the most efficient enzyme cocktail
design from literature [60,61] and calculations in [31]).

ï total_enz_molecules
parameter #6
Total number of enzyme molecules involved in the digestion of the single simulated
microfibril.
Units: none. Value used: 50.

ï length_fibril
parameter #7
Length of the simulated microfibril in terms of 𝛽-1-4 bonds in the cellulose chain.
Units: none. Value used: 200.

ï boolean_Xyl_or_MLG
parameter #8
It determines whether the hemicellulose contains either xylose(1) or mixed-linkage glu-
cans(0).
Units: none. Value used: 1.

ï pct_xyl
parameter #9
Percentage of xylose in the hemicellulose.
Value: 1 (Currently unused, kept as a placeholder for future upgrades to accommodate
multiple significant hemicellulose types at the same time).

ï pct_cellu
parameter #10
Relative fraction of cellulose in the substrate composition.
Unit: none. Range: 0.01-1 (value as user input from Table 1).

ï pct_hemi
parameter #11
Relative fraction of hemicellulose in the substrate composition.
Unit: none. Range: 0.01-1 (value as user input from Table 1).
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ï pct_lign
parameter #12
Relative fraction of lignin in the substrate composition.
Unit: none. Range: 0.01-1 (value as user input from Table 1).

ï pct_acetyl_hemi
parameter #13
Currently unused. Value: 0

ï pct_crystalline_cellu
parameter #14
CF cellulose.
Units: none. Range: 0-1. (Fitted uniquely per sample to reproduce saccharification time-
courses and CI of total biomass)

ï pct_crystalline_hemi
parameter #15
CF hemicellulose.
Units: none. Range: 0-1. (Fitted uniquely per sample to reproduce saccharification time-
courses and CI of total biomass)

ï Mean_defect_size
parameter #16
𝜇defect
Units: none. Range: 0-0.5.

ï Nbr_of_defects
parameter #17
Ndefect

Units: none. Range: 0-1.
ï r_monomer

parameter #18
Radius of a single monomer of cellulose and hemicellulose.
Units: nm. Value fixed: 0.6.

ï Lignin_adhesion_rate
parameter #19
The number of monolignols that undergo non-productive adsorption on a single enzyme
molecule. A smaller number indicates higher non-productive adsorption.
Units: none. Typical Range: 100-350.

ï digestibility_ratio cellu
parameter #20
rc,a cellulose.
Units: none. Range: 0.00001-1. (Fitted uniquely per sample to reproduce saccharification
timecourses and CI of total biomass)

ï digestibility_ratio hemi
parameter #21
rc,a hemicellulose.
Units: none. Range: 0.00001-1. (Fitted uniquely per sample to reproduce saccharification
timecourses and CI of total biomass)
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