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Abstract

This work explores the qualitative dynamics of false vacuum decay in two dimensions, fo-
cusing on its realization through quantum annealing. Theoretical foundations are outlined
and mapped onto quantum hardware, with several encoding strategies evaluated. Among
these, the coupled domain wall encoding emerges as the most efficient, minimizing qubit us-
age while maintaining distance and rotational symmetries crucial for faithful modeling on a
QPU. The study also addresses fidelity concerns: instead of the expected uniform distribution
in the absence of an encoded potential, the coupled domain wall representation exhibited a
bias toward anti-ferromagnetic states, which can be attributed to coupler imperfections. To
mitigate this, techniques such as shimming and spin-reversal transformations were tested.
Spin-reversal transformations proved to be most effective, both reducing variance as well as
eliminating bias without requiring additional corrective iterations, thus offering a lightweight
error-mitigation scheme. Building on this foundation, the decay process was simulated using
modified Poschl-Teller potentials combined with a local and global minimum. The results
qualitatively reproduced the exponential decay, depending on the distance between the min-
ima, in agreement with semiclassical quantum field theory.
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1. Introduction

In the beginning, there was nothing but an infinitely deep void. In a matter of moments,
light emerged, and with it the universe came into existence. Over billions of years, up to the
present day, it has persisted in the state we currently observe. But what if the seemingly
stable state is not as stable as it intuitively appears? It is conceivable that the universe
as a whole merely resides in a metastable configuration, which could, in principle, undergo
a sudden transformation to a more stable true vacuum state within a fraction of a second
[Col77], as proposed by Coleman in the late seventies. Although such an event is highly
unlikely, it cannot be excluded within the framework of quantum field theory and is referred
to as false vacuum decay.

However, this phenomenon is not restricted to the universe at large but can be observed
in many areas of physics more generally. The concept appears whenever a system occupies
a metastable state governed by a potential landscape. Consider, for instance, a quantum
system initially trapped in such a false vacuum: over time, quantum fluctuations may induce
a transition to the true vacuum, governed by the principles of quantum tunneling. Despite
the underlying mechanism being well understood within the context of quantum mechanics,
the actual computation of decay rates for arbitrary potentials remains a non-trivial task.
In many cases — especially for multidimensional or non-analytic potentials — an exact
analytical treatment is not feasible. This necessitates the use of numerical methods, which,
although powerful, often reach their limits for more complex and larger system sizes due to
the exponential growth of the Hilbert space — the curse of dimensionality.

This raises the question of whether one could simulate such decay processes directly on the
level of quantum mechanics rather than classically, which sometimes requires approximations
to manage the curse of dimensionality. With recent advances in quantum computing, this
idea is becoming increasingly realistic. In contrast to classical numerical methods, a quan-
tum simulation evolves the full quantum state of the system under the given Hamiltonian,
utilizing the superposition principle over all possible states and thereby overcoming the curse
of dimensionality arising from the exponential scaling of the Hilbert space with system size.

In the context of false vacuum decay, this idea has already been explored using both
digital and analog quantum computing platforms. In [KL25|, the decay from a metastable
state was simulated on a digital quantum computer, where the system’s time evolution was
implemented using a trotterized approximation of the full Hamiltonian. This allowed for
a stepwise, gate-based simulation of the dynamics leading to the decay, providing insights
into how such tunneling phenomena can be captured within a discretized Hilbert space and
controlled gate sequence. On the other hand, the use of analog quantum computers allows
for the simulation of the system of interest without requiring approximations to compute
decay probabilities or path integrals, as it enables modification of the actual Hamiltonian of
the hardware platform — keeping in mind that this Hamiltonian is still only an approximate
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description of the hardware, which becomes increasingly complex as one strives for accuracy,
and may eventually fail to capture phenomena such as decoherence — and letting it evolve
in time, capturing the dynamics using measurements of predefined observables. Using this
approach, [VDH™25| investigated the nucleation process during false vacuum decay on an
analog quantum simulator, where the continuous quantum dynamics of the system emerge
naturally from the physical interactions engineered in the hardware itself. This approach,
typically realized in platforms like cold atoms or trapped ions, does not rely on digital gate
operations but instead allows the system to evolve according to an effective Hamiltonian that
mimics the behavior of a metastable field configuration undergoing decay.

The present work builds upon the results of [AS21], where false vacuum decay was simulated
within a scalar quantum field theory using a quantum annealing approach. In that study, the
field was discretized and mapped onto an Ising spin system, which was then implemented on
a quantum annealer to observe the tunneling dynamics from a metastable state to a lower-
energy true vacuum. The tunneling probabilities extracted from the annealing process showed
good qualitative agreement with theoretical predictions, providing experimental indications
of instanton-like decay in a quantum field-theoretic setting. However, this demonstration was
limited to one spatial dimension.

In this work, an extension of false vacuum decay simulations to two spatial dimensions
is investigated, where the potential landscape and tunneling dynamics become more com-
plex. To this end, chapter [2] introduces the theoretical foundation needed to compute the
expected false vacuum decay behavior, such as the path integral formalism and the corre-
sponding bounce solutions in two dimensions, a potential that facilitates the construction of
a false vacuum scenario, as well as the theoretical background of quantum annealing with a
realistic noise model, which will be used for the simulations of false vacuum decay. Chap-
ter [3] introduces and compares several possibilities for encoding the decay onto the QPU,
evaluating applicability and efficiency, with the coupled domain wall encoding emerging as
the best solution. For actual simulations on the QPU, the hardware must be calibrated, as
even small noise sources can significantly influence simulations of quantum systems. For this
purpose, chapter |4] uses the previously introduced noise model to explore calibration meth-
ods, where spin-reversal transformation emerges as the most promising solution to mitigate
errors. Before the actual simulations are run on the QPU, the numerical results for a two-
dimensional potential describing a false vacuum need to be computed which is detailed in
chapter Chapter [0] outlines and discusses the subsequent simulation of the potential on
the QPU, and the results are compared to the previously obtained numerical data. Although
the two approaches exhibit consistent qualitative behavior, they differ quantitatively; the
possible sources of this discrepancy are examined, and the question is raised whether these
effects are of thermal or quantum nature. The thesis concludes with chapter [7], where pos-
sible applications of these simulations are presented and possible future research directions
are discussed.



2. Theory

In this chapter, the theoretical foundation is introduced, which forms the basis for under-
standing false vacuum scenarios investigated in this thesis and enables their simulation on
the D-Wave Quantum Processing Unit (QPU).

2.1. False Vacuum Decay

A false vacuum is defined as a metastable configuration of a system, a local minimum in its
potential. Due to its metastability, such a configuration will eventually decay into a more
stable configuration, the true vacuum, a global minimum in the potential, if given enough
time. In this section, the theoretical background of the false vacuum decay is elaborated,
more precisely, the qualitative behavior in dependence on a given potential. For this, the
path integral formalism of QFT is introduced as a starting point and, using a semi-classical
approximation, solved to retrieve a decay probability of the false vacuum. The derivations
in the following sections are largely based on [DDDLR22] to which the reader is referred for
further details.

2.1.1. Path integral formalism

The QFT path integral is another form of computing the amplitude for a quantum state
being in some final state |¢) while starting in some initial state |¢4), which is equivalent to
the regular expression from quantum mechanics, using the time evolution operator and the
inner product on the final and evolved state. For a real scalar field, the path integral is given
by [PS95]

—iHt/h o —islel
K(a,b) = (g] e 1/ |g,) = / De (2.1)
Pa
where H is the Hamiltonian of the present system and S the action defined by
T/2 T/2 1
S = Ld'z = / ~(0u0)? — V(p)dtd*x (2.2)
—T/2 —1/2 2

with £ being the Lagrangian density, ¢ the real scalar field, V(¢) the potential depending on
the field and 0, = (a%, V) in the four-vector notation. The D¢ represents the integration of
all possible paths ¢(t), starting at ¢(—T/2) = ¢, and ending at ¢(T/2) = ¢. Additionally,
one obtains

SO0 +V(9) = B, (2.3
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(a) QFT potential with a false vacuum ¢y and a (b) Quantum mechanical analogue to Fig.
true vacuum ¢y . ¢. marks the escape point governed by the

classical equations of motion.

Figure 2.1.: Analogous potentials to simulate a false vacuum decay once in QFT and once in
a purely quantum mechanical framework. When starting in QFT and reducing
the field to one dimension such that the theory becomes isomorphic to quantum
mechanics, the potential for the equivalent false vacuum decay transforms from
Fig. to Fig. The resulting potential becomes open for ¢ — oo with

(bligrllf V((ﬁ) < V(¢FV)

from energy conservation. In the context of a false vacuum decay and a four-dimensional
quantum field theory, a potential of the form such as in Fig. is given, where the system’s
field configuration over all space is at first in the false vacuum configuration ¢py but even-
tually it decays into the more energy favorable true vacuum ¢7v. It is important to note
that while the potential is given at a specific spatial point in time, the state of the system
is defined as a collective field configuration over all space at a given time. Mathematically,
the collective configuration over space is given in Eq. by the indefinite integral over
all space [ d3z, while the specific time is given by the integral over time. With this, the
false vacuum configuration is defined as the collective configuration that each field value over
the entire space is in ¢y, while during the decay, it evolves over time toward the collective
configuration of all field values over the whole space, decaying into ¢v.

In the semiclassical approach, in which A — 0, one can use the the saddle-point approxima-
tion (see for a more in-depth explanation). Here, because h goes to zero, the exponent
becomes large and induces large oscillations, which will cancel out when integrating the entire
configuration space. The only dominant contributions are those close to the saddle points,
in complex space, of the function in the exponent. This is because a small shift in the input
variables does not lead to a large change in the function’s output (as the derivative of the
function is close to zero at these points), which consequently suppresses large oscillations.
These similar terms are then the only ones that are summed up in the integral. To make
it clearer which terms these are, one needs to deform the contour in the complex plane so
that the wanted saddle points become apparent in the integrand. This can be done due to
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Cauchy’s integral theorem, which, among other things, states that for a holomorphic function
on an open region in the complex plane, the line integral is independent of the path. In the
given case, these deformations need to be of global nature over the whole domain of paths to
not alter the underlying physical model. Surely, one could try to search for the paths which
dominate without any deformations of the domain [AGT19], but this would be an impractical
task as it is not directly clear from the formulation of the integral which paths these might
be. Therefore, a Wick-Rotation t — i1 is performed, which represents a 90° rotation of the
path domain in the complex plane and mathematically coincides with a change from the
Minkowski into the Euclidean space (see.

This leads to the following equations Where the 9w

Euclidean metric is employed

K(a,b) = " pgete 5o / v L0,6)2 + V(6)drds (2.4)
9 - 2 9 .
ba T/2

with the equation for energy conservation transforming to

5 (0.0 + V(6) = . (2.

effectively inverting the initial potential. As one can see, the oscillatory behavior arising
from the ¢ in the exponent vanishes, and as the action is invariant under a deformation of
the path contour in the complex plane, the whole expression takes the form of a decay. One
can solve it by finding the minima of the action, which coincide with the saddle points in
complex space already mentioned above, as these are the ones that dominate the integral,
and apply a second-order functional Taylor-Ezpansion (FTE) around these (see sec.
to incorporate small deviations around the minima. For the sake of simplicity and foresight
(as this procedure will later on only be done in the dimension for at most two concurrent
active fields) only the time dimension is considered from here on, rendering effectively
a one-dimensional quantum mechanical system, but can be adjusted to work for multiple
dimensions (see sec. , by accounting for all dimensions in the path. It is worth noting
that while this dimension reduction seems simple on paper, it might have a great influence
on the potential’s form if one wants to preserve the qualitative behavior of the system, as it
transforms the QFT into a purely quantum mechanical framework. Considering the potential
in Fig. in order to preserve the qualitative decaying behavior of the system trying to flip
infinitely many field values to ¢y [Col77], one has to effectively transform it into Fig. [2.1b
as the infinity from the spatial dimensions, into which the false vacuum configuration would
have decayed over an infinite time, vanished. This decay into infinity effectively becomes the
open potential of Fig. where for ¢ — oo the potential energy is below the false vacuum
energy V(¢) < V(¢py). This ensures that once the metastable state decays from ¢py, it
wanders off to infinity, never returning, similar to the QFT case. The second-order FTE of
the action is then given by

1 T/2 52
Sto) ~ Slgal + 5 | 1, DS BalboT)r S6a) = gz V (6a) (26
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where 0¢(7) = ¢(7) — ¢pa(7) and ¢ is the classical path, also called instanton, representing
a particle traveling in the potential, deduced from the Euler-Lagrange equations, which min-
imizes the action. It is convenient to define a basis set of orthonormal eigenvectors of S”[d]
in the following manner

T/2
S dalton(7) = Autba(r)  with / A7) = G n(T/2) = n(T/2) = .
—T/2
(2.7)
This is analogous to the one-dimensional Schrodinger equation, in which one has a Hermitian
differential equation with vanishing boundary conditions. The hermicity ensures orthogonal

eigenvectors, which in turn yield the basis set. With this, one can write an arbitrary path in
the S”[¢] basis

¢( ¢cl + Z ann (2.8)

where the start and endpoints are fixed, which, after plugging in Eq. (2.8]) into (2.7)), yields
the following relation for the action

[é] ¢cl Z )\nc (29)

Equation ([2.8) implies that an integration over all possible paths can also be equivalently
written as

Do =[] den_ (2.10)

where the integration is performed over all the possible ¢, with an extra factor added for
later convenience. Inserting this and (2.9)) into Eq. (2.4) yields

_5Slq) 1 o _Anep
K(a,b)=¢ "= H\/ﬁ/ dcpe” "2h (2.11)
S[%l]
(2.12)
IEe

e_ [?Lcl] S[d)cl]
= = Ae F (2.13)
det S"[pe]

where from the first to the second line a Gaussian integral is performed, and in the last line
a functional determinant is defined as

det S"[¢u] = H An- (2.14)

A similar derivation can be found in the section ”Feynman Rules” of [PS95]. If there are
several paths that minimize the action, one needs to sum over all of them according to

¢Cl nl

ZAe e (2.15)
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The tunneling probability from ¢, — ¢ is then in turn given by piunne = |K (a, b)|%.

As in this work only the decay behavior in connection to the distance between ¢, and ¢y
is investigated, which comes from the exponential factor, the specific value of the functional
determinant is not needed and therefore will only appear as a proportionality factor. Never-
theless, for quantitative studies it is of interest and therefore needs to be taken into account.
From this, problems may arise which need to be tackled e.g. negative eigenvalues, zero modes
(zero eigenvalues) and the divergence of the determinant. They can be overcome by isolating
the zero mode, the eigenstate with a zero eigenvalue, in Eq. . The zero mode is given

by 1y = Ca(g:;’l, where C' is a norm constant, which can be verified by computing S”[dc1.1]%0
resulting in zero. With some calculations, which can be found in [DDDLR22], one can show
that the zero mode is equivalent to an integration over all possible instanton centers (at ¢(0))
¢(7 — 71). This results in

S[¢Cl,1]7s[¢cl,0]

K[‘bel,l] = K[ﬁbcl,O]ITe_f, (2.16)

with

, \/S[cbcu] — Sléao] [ det S”[peo] (2.17)

27h det’ 8" [pa11]’

where det’ S”[¢q11] is the determinant without the zero eigenvalue, @1 is the one-way path
from a — b and ¢ is the constant path that represents the particle residing at a. K¢ o]
is given by Eq. . Notably, as long as V(¢,) = 0 is chosen for the false vacuum, the
action S{gec1 0] = V(¢a)T is zero.

2.1.2. Bounce solution

In the previous section, a tunneling amplitude was computed for a path from ¢, — ¢p. While
this is sufficient to determine a transmission coefficient 7 for the tunneling probability, it does
not give the decay probability per unit time that a false vacuum state might decay. In this
case, considering a potential of the form of Fig. [2.1b, one resorts to the Bounce solution
(introduced in [Col77]) according to the equations of motion, where one, instead of taking
classical paths, which end behind the barrier, takes classical paths, which start and end in the
false vacuum, while intermittently reaching the other side of the barrier, so-called bounces.
This does not have to be limited to a single bounce but can happen arbitrarily often. All these
paths which minimize the action have to be accounted for. This enables the computation of
the decay probability per unit time that the state decays, meaning that the particle does not
return to the false vacuum but leaks into the more favorable, lower-energy region. This can
be described by

K(EV,FV) = (¢pyle T Mgpy) = e T (gpyn)?, (2.18)

where |n) is the complete set of eigenstates of a Hamiltonian H, considering a potential of the
form of Eq. (2.1b)) with neglected tunneling, while still using the imaginary time convention.
Effectively, no tunneling in this context means, that at first one approximates the potential



2. Theory

solely as the local minimum, i.e. the false vacuum, and ignores the lower-lying potential part
behind the barrier, rendering the local minimum the absolute minimum. The last step in
Eq. is obtained by inserting the complete set of eigenstates |n) of the Hamiltonian
H, with neglected tunneling, for the time evolution operator e H#T/h = 3~ e=EnT/h |p) (p).

In this scenario, the eigenstate with the lowest eigenenergy which dominates Eq. - ) for
large T', is the ground state of the local minimum, the metastable false vacuum state. Then,
through an analytical transformation, the potential is transformed from only describing the
false vacuum well to describing the potential with the lower energy part behind the barrier
included, making the false vacuum again a local minimum, ”turning” on tunneling [CC77]. In
this context, Eq. raises the question ”What is the probability that the particle stays in
the local minimum at position |¢py) after some evolution for a given time 7?”. For turned-on
tunneling, one can attach an imaginary part to the energy of the metastable state to account
for the decay of the probability into the lower-energy region

S[Eo] = ~I/2 = —Iv/2, (2.19)

where I' denotes the decay width and ~y the decay probability per time unit. The latter decay
rate is a central quantity of interest in studies on false vacuum decay. This might seem like a
non-unitary evolution as probability is leaking away, and in essence it is, as one treats the false
vacuum here as an open system coupled to an environment, the lower-lying potential energy
part. This results from the description of the system by a set of eigenstates for turned-off
tunneling, while performing an analytical transformation of the potential exhibiting a false
vacuum, while at the same time analytically continuing the spectrum of the Hamiltonian,
leaving the initial set of eigenstates unmodified. As the metastable state is not in the spectrum
of the Hamiltonian with full potential of Fig. this is therefore the only way of computing
its energy [CCTT7]. Notably, one finds the same result for the decay probability per unit time
in the imaginary part of the energy as one would have obtained in the real-time calculation.
The total decay probability can, in turn, be derived from

dP(t)

dt

with P(t) = P(0)e~"*/" being the probability for encountering the metastable ground state,
consistent with Eq. .

The decay width can be isolated by taking the T' — oo limit, as the lowest eigenenergy has
the largest contribution,

= —~P(1), (2.20)

v =23 [ lim logK(FV’FV)] . (2.21)

T—oo T

One can insert Eq. (2.15) for K(FV,FV) while accounting for all possible multi-bounce
solutions given by the exponentiation of Eq. (2.16)) and neglecting tunneling in the potential

( Sl¢c1,6]=S[%c1,0] >
e
K(FV,FV) = K [¢a1,0] Z (2.22)

n!

S[#c1,b]=S[¢c1,0]
= K[¢a,0] exp (I Te‘h> : (2.23)
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where ¢y is the bounce solution with ¢cp(—1/2) = ¢e1p(1/2) = ¢rv and ¢ p(0) = e,
which is, in this case, the escape point, the point where the particle reaches the other side of
the barrier with zero velocity and bounces back, governed by the Euler-Lagrange equations.
Up to this point in the computations, K(FV,FV) is purely real as tunneling was not yet
considered in the potential [DDDLR22]. Performing the analytical transformation of the
potential, the prefactor I acquires an imaginary part as the lowest eigenvalue of S”[¢¢1p) is
not the zero mode anymore but a negative one, which can be seen in the zero mode acquiring
a node (a zero crossing), as the velocity goes from positive to negative due to the nature of a
bounce. According to the Sturm-—Liouville eigenvalue problem [AGO8] an eigenstate v, has
exactly n of such nodes, making the zero mode the first excited state, whereas the ground
state subsequently has a negative eigenvalue. This negative value can be explained by the
bounce becoming a saddle point in configuration space. The direction in configuration space
in which the escape point is variable contains the maximum. After isolating this eigenvalue
in Eq. and solving the integral by analytically continuing the Gaussian integral from
positive to negative \g, it gives rise to the imaginary part [CC77, DDDLR22]

1 [S[pap] — Slpap] | det S”[peo]
S == : : —. 2.24
St] 2\/ 2 | det’ S"[pe ]| (2:24)
Inserting all this into Eq. yields
S[pc1p] — Slearo] [ det S”[peo] _Slécrpl—Sléerol _B
— ) ) b , — A . 225
i \/ ok det’ 5"[¢ay) ! ¢ (2.25)

When taking into account that the bounce solution is symmetric around 7 = 0, furthermore
considering energy conservation and that the paths are derived classically from the Euler-
Lagrange equations, one can rewrite the exponent B as the expression from the previous
section as

B=2(s s _2 ¢ed\/2V v 2.26
= 261 = Slguol) = 1 [ do V() ~ Vi) (2.26)

where the path transforms into FV — e, the escape point behind the barrier. The tunneling
probability (2.16]) is proportional to the decay probability per unit time of the metastable
ground state

Sléc1,1]—5[de1,0) S[oc1,1]1—S[¢c1,0]

|K(FV,e,T)|? = Age™? z x Aje? R =". (2.27)

For the purpose of this thesis, only the exponential function will be of interest, as this will be
the behavior investigated in the simulations and which should be the same for the tunneling
probability as well as for the decay probability per time unit. The prefactors might differ but
do not have a qualitative influence on the exponentially decaying behavior.

Remark 1 It is important to note that even though one obtains a decay rate by FEq. ,
the survival probability of the metastable state derived from FEjq. only approaches zero
for t — oo if the potential V(¢) is open to the right side, meaning V(¢ > ¢.) < V(édpy).
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This ensures that once the metastable state decays, the particle never returns but moves
toward infinity due to its momentum [Col77/]. However, when there is a double well potential
where the potential is bound and approaches positive infinity for ¢ — +oo, one would expect
that once the instanton reaches the boundary, it is reflected, and when it reaches the barrier
again, it regains a probability to tunnel through, which in the end leads to oscillations in the
survival probability of the metastable state. One also needs to keep in mind that when doing
stmulations one needs to discretize the potential in space, which in turn implicitly introduces
infinite boundary conditions on the edges leading to inevitable oscillations.

2.1.3. Many degrees of freedom

The goal of this section is to extend this formalism to two concurrent one-dimensional scalar
fields, which still represents a one-dimensional quantum field theory but is isomorphic to
a two-dimensional quantum mechanical system, given some transformation V(¢ (t), % (t)) —
V(x(t),y(t)), where z and y represent spatial components. In general, one can write

@b g
meﬂ%wmwwajéd@i? (2.25)
T/
S = / i 1(8H¢)2 — V(g)dtd3z, (2.29)
—T/2 2

for multiple scalar fields in a four-dimensional quantum field theory [PS95] where ¢ stands
for the vector of all given fields {¢'}. For a bounce solution in a potential of the form of
Fig. the following boundary conditions emerge

. . . , ¢’
lim ¢'(7,x) = ¢hy m ¢'(7,x) = dpy o7

li
T—Fo0 || =00 ot .o

=0, (2.30)

with qb%v being the i-th field component of the false vacuum position and x the spatial
coordinates. The procedure to retrieve the decay of a metastable state is the same as in the
section above, where it is performed only for one dimension. This is equivalent to how it
would be done in regular quantum mechanics. In four dimensions and with multiple fields,
the starting point is effectively identical, as can be seen in the equation above, except for
the additional integrals over the spatial coordinates due to the incorporation of field theory
[Col77], but with slight differences in the result due to the generalization. Nevertheless, the
procedure is the same. In the beginning, one also performs a Wick rotation, followed by the
steepest-descent method where a functional Taylor expansion is applied. The phases which
dominate the path integral are again the classical paths which are solutions to the Euclidean
equation of motion, deduced from the Euler-Lagrange equations

2 o\ . OV
(52 + %) ¢ = 5 (231)

but for several fields and four dimensions, which are coupled ordinary differential equations.
This yields an analogous decay probability per unit time as Eq. (2.25) but with a different
prefactor and different bounce solutions due to the higher dimensionality.

10



2.1. False Vacuum Decay

To retrieve the bounce solutions, one can use the fact that the action is in fact O(4)-
invariant, where O(4) is the four-dimensional rotation group, and therefore presume that
the bounce solution, which minimizes the action, also has this property. In mathematical
formulation, this means that the solution ¢’ is only a function of the variable

p= 72+ 2P, (2.32)

which in turn transforms Eq. (2.31) after performing a variable transformation regarding p
to ] ]

02¢! +D—lagzbZ oV

op* p Op IV
where D is the number of dimensions. And, in fact, it was shown in [BHST16| that for a
multi-field system an O(N)-symmetric bounce solution minimizes the action so that the O(N)-
non-symmetric solutions can be ignored and additionally it was shown in [Col77] that such
an O(N)-symmetric bounce solution always exists. The boundary conditions in Eq. (2.30))
thus become

(2.33)

‘ . O
li “(p) = ot - =0 2.34
Jim ¢'(p) = dpv ar |, (2.34)
with the additional condition that .
09 =0 (2.35)
op p=0

to avoid a singularity at this point. Lastly, the Euclidean action in spherical coordinates has

the form ,
Qp_ e 1/0
s 52 [t 5 (50) v

Due to the fact that ¢ is only dependent on p alone, there are no dependencies on the

%WTD//;) , with T" being the Gamma function.

(2.36)

integration angles giving the surface area Qp_1 =
In the case of several fields in one dimension, the equations above, starting from ,
become the equations for the problem stated in section with the only difference that
one has multiple fields and for analogy in the decaying behavior the potential transforms from
the form of Fig. - 2.1al to Fig. [2 In particular Eq. ( reduces to the known action from
the previous sections, as one apphes the appropriate spherlcal integration measure based on
the dimensionality, which, for one dimension, would be the regular one-dimensional Euclidean
integral. Basically, it reduces to a regular quantum system with many degrees of freedom.
The decay rate becomes effectively the same as in Eq. , with the exponent being a line
integral in several dimensions after applying energy conservation

9 T/2 2
= ﬁ(s[ﬁbcl,l Sl o)) e [ <6t> +V(g) = V(da) (2.37)
T/2 T/2
=3[, e v =1 [ o280 AVm Ve e
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2. Theory

where the path is deduced from the Euclidean action of motions due to multiple fields, with
¢(—T/2) = ¢ppy and ¢(T/2) = ¢p. being analogous to the false vacuum and the escape point
behind the many-dimensional potential barrier. One can define ds = dt|0¢(t)/0t| as the arc
length, which naturally gives |0¢(s)/0s|?> = 1, thus cancelling the prefactor. For a similar
derivation and more information about the arc length representation, see section

2.2. Modified Poschl-Teller Potential

In the above section, the results were derived for an arbitrary scalar field, but as in the course
of this study, such a decay is going to be simulated on the D-Wave QPU, a specific potential
needs to be chosen. For this study, the modified Poschl-Teller potential was chosen, as the
spectrum of eigenstates and eigenenergies is well known and understood for one dimension
[BP18, [CGKN16], but can be expanded in a similar manner into two dimensions, as will
be shown later. Additionally, with this potential, one can effortlessly construct double well
scenarios which exhibit a local as well as a global minimum, which enables the measurement
of a false vacuum decay. A similar study was performed in [AS21], in which a one-dimensional
quantum field theory with a one-dimensional modified P6schl-Teller potential measuring the
decay from one well into the other was simulated. This paper is also the baseline for this work,
motivating an extension of the previous research from a one-dimensional to a two-dimensional
potential, and effectively simulating a two-dimensional quantum system.

The derivation of the bound eigenstates and their eigenenergies for the one-dimensional case
is given in [BPI8]. Therefore, in the following sections, the results for the two-dimensional
case, obtained by the same procedure, are discussed in more detail. A more detailed derivation
can be found in section [A.2.2

2.2.1. Two Dimensions

In general, the appraoch underlying the derivation is that, instead of solving the time-
independent Schrédinger equation for some potential to retrieve the eigenstates, one finds
the potential corresponding to some given eigenstates. In the end, one finds the modified
Poschl-Teller potential for the given eigenstates. Since in this work, only the ground states
are of interest, only these will be derived, while the computation of higher excited states will
not be pursued here. Taking the time-independent Schrédinger equation in two dimensions

ﬁ2
——A v ¥) = Eo(¥ 2.
(- g+ V@) ) pld) = Bl (2.39)
where V = (9/0z,0/0y) and A = V2, one can rewrite it as
2m . Ap(T)
=2 _El = . 2.4
V(@) - B = 220 (2.40)
Choosing the ground states depending on [ € RT\{0} and some constant ¢ € R
- S cl I'(l+1/2
©1(|Z]) = v/ Nosech! (¢ - |7|) No = lel T /2) (2.41)

Vi TQ)
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2.3. Quantum Annealing

with Ay being the norm constant and I" the Gamma function, one finds

tanh(c - |Z|)

S V(&) — E] = |-l +1(1 + 1) tanh?(c - |7]) — 1 E

, (2.42)

from which one can directly deduce the potential and the eigenenergy of the according state

2m
h2c2

tanh(c - |Z|) 2m
7 h2c?

V(Z) =1(I + 1) tanh?(c - |]) — I E=1 (2.43)
One can verify with the Sturm-Liouville theorem that Eq. really accounts for the
family of ground states, as these exhibit zero nodes. Moreover, in [BP1§| it was shown for
the one-dimensional case and an integer [, that [ governs the number of bound states which the
Hamiltonian exhibits, having [ distinct bound states. Although the authors only considered
I € N it also holds for [ € R, as there is no real restriction on [. The number of bound states
for real [ is given by the number of solutions n for the inequality n < I, with n € No[CGKN16]
being related to the eigenenergies. Heuristically, one could assume that the same holds for
the two-dimensional case, which, within the scope of this work only bears importance as the
excited bound states, as well as scattering states, are possible thermal excited states during

the quantum simulations on the DWave QPU. For a derivation of Eq. (2.42)) see section

2.3. Quantum Annealing

The emerging technology of quantum computation, especially quantum annealing, is espe-
cially well suited to study the above theoretical predictions. Quantum annealing yields a
compelling use case to implement a protocol to simulate the system discussed above while at
the same time these protocols enable testing of current devices in development with respect
to their reliability. The focus of this work is going to be on the former but, to a lesser degree,
the latter also bears importance in verifying the reliability of the results.

Quantum annealing is an optimization process based on the physical core of quantum
mechanics where quantum fluctuations and superposition are used to explore the search
space by tunneling mechanisms between states. Unlike gate-based quantum computing, which
manipulates qubits using sequences of logic operations, quantum annealing is an adiabatic
approach in which the system evolves toward a low-energy solution state of a given problem
in accordance with the adiabatic theorem, given that the annealing is done slowly enough.
Such a process is implemented by the D-Wave QPU, in which the hardware implements the
following Hamiltonian

A(s) v B(s) . 2
7-7
Hp Hp

with o and o7 being the Pauli-X and Z matrices acting on the qubit at position i. The
problem is encoded in the parameters h;, which is an external magnetic field applied to qubit

13
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Figure 2.2.: Process parameters of a quantum anneal on the D-Wave QPU

¢, and J; j, which is the coupling constant between two qubits ¢ and j, into which the Poschl-
Teller potential from the previous section is going to be incorporated later on in chapter
Additionally, the Hamiltonian offers the possibility to embed a user-predefined h-gain
function g¢(t), which controls the h; biases independently from the rest during the anneal. It
is important to note that the annealing Hamiltonian acts on a discrete set of qubits; thus
the encoded problem also has to be discretized. This does not pose a significant problem
as in this work the discretization of a potential is a straightforward process, still it brings
about certain implications such as the introduction of implicit infinite boundary conditions
and a dependence of the final quality of the simulations on the correct choice of discretization
parameters. A(s) and B(s) are the anneal schedule parameters depending on s(t), which is
specified manually by the user for the whole duration of the anneal. The anneal schedule
for the D-Wave Advantage System 6.4 can be found in Fig. At the end of an anneal,
each qubit is measured to determine whether it is in the |0) or |1) state, which, over many
qubits, returns a configuration of the whole system. This is repeated many times until one
retrieves a statistically sampled probability distribution over all possible configurations. The
configurations are of interest, as these contain the solution to the user-encoded problem on
the QPU, which needs to be decoded afterwards with respect to the problem.

When using quantum annealing, one is usually interested in finding an optimal solution to
a problem which is given by the ground state of the problem Hamiltonian, denoted by Hp,
by finding a configuration which coincides with the lowest eigenenergy of this Hamiltonian.
To do so, one starts at ¢ = 0 and s = 0 in the ground state of the driving Hamiltonian

14



2.3. Quantum Annealing

Hp, which is a superposition of all possible configurations, and lets s increase slowly to 1.
Thereafter, the system should, in accordance with the adiabatic theorem, be in the ground
state of the problem Hamiltonian, i.e. the configuration which optimizes the solution to the
problem. Such an anneal schedule is called forward anneal.

The next step is to consider its application in the scope of this work, because the effect
which is sought for the simulation of the false vacuum decay is not an optimization problem.
Instead the focus shall be on measuring the final state of the real-time dynamics of the decay.
A forward anneal is not suitable for that purpose, as it does not allow setting the initial
state in the false vacuum but rather starts in a superposition of all states. If starting in the
superposition of all states, one would obtain the ground state in the global minimum as the
final state, but it would be impossible to deduce the decay fraction of the metastable false
vacuum state from that. Instead, the D-Wave QPU allows for a reverse anneal, in which the
initial value of s = 1 decreases to some arbitrary s, and, after the system has evolved for
some time, increases back to s = 1. Such a schedule can be seen in Fig. which governs
the parameter s(t), which will also be used later for the simulation, as it allows setting the
initial state in the local minimum at s(t = 0) = 1. As the evolution progresses, the system
attains a probability to tunnel into the global minimum and at the final £g,,;, in this example
tinal = 40us, the system is then measured to deduce the tunneling fraction from the local to
the global minimum of the run. During the whole run, the evolution of the system of the false
vacuum decay only occurs while s = 0.4 as at that point, as A(s) increases and B(s) decreases,
the proportionality shifts toward the drive Hamiltonian which represents the momentum of
the states, introducing off-diagonal matrix terms, which can be interpreted as the momentum
of a particle in an encoded Po6schl-Teller potential. With a particle momentum p # 0, the
system exhibits dynamics, more specifically, in this case, the particle attains the probability
to tunnel through the barrier of the double well into the global minimum. Ideally, one would
start with a potential which describes only the false vacuum well at s(0) = 1, decrease it
slowly to s = 0.4 and keep it constant until the end. Once s = 0.4 is reached, one would
“turn on” the second well using the h-gain, transforming the potential to incorporate the
lower-lying global minimum, analogous to the theory in subsection and similar to the
implementation in [AS21], in order to make the false vacuum a metastable state, introducing
tunneling effects and thus causing the decaying behavior. The measurements are then taken
after some time ¢ while the s value is still 0.4. Unfortunately, the D-Wave QPU currently
does not allow measurements at values s # 1, so one needs to resort to a reverse anneal
scheme as described above, preferably quenching the system at the end as fast as possible
within the given limits. Additionally, as will be shown later in section [3.2], it is not possible
to encode a two-dimensional potential into the h-parameters.

Remark 2 It is important to note that for long enough annealing times, thermalization likely
occurs on the D-Wave QPU during the annealing process [MVHRI19]. This means an exchange
of thermal energy until an equilibrium is reached, as the chip on which the annealing takes
place interacts with its surrounding environment through heat exchange [Amilb]. More pre-
cisely, if the system is in an excited state with an enerqy scale larger than the thermal energy
of the environment, it can release energy to the colder environment through heat exchange,
which can drive the system toward lower-energy states and potentially toward its ground state.
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2. Theory

This means that in the end, the state distribution does not only follow a quantum mechanical
description but rather a semi-classical description in accordance with a Boltzmann distribu-
tion.

Computing the order of the effective temperature of the quantum annealing Hamiltonian
by 10724 /kp ~ 7T2mK (energy order of the Hamiltonian taken from Fig. and kg being
the Boltzmann constant) and comparing it with the qubit environment temperature of 16.0 £
0.1mK, given by D-Wave for the Advantage system 6.4, one sees that the effective temperature
is larger than that of the environment within the extent of the approximation. This suggests
that during thermalization, the system s likely steered toward its ground state, as higher
excited states are erxponentially suppressed.

This is important to keep in mind later on, as, as mentioned in remark [1, one would ez-
pect oscillations in the survival probability of finding the particle in the local minimum due
to energy conservation. With the thermalization toward the ground state taking place, one
would expect that the oscillations die out after some time and the particle stays in the global
minimum as this is the overall ground state. While this process of dying out takes some
time due to the probabilistic nature of thermalization, it will skew the theoretical predicted
decay probability per unit time. Nevertheless, it will still yield valid transmission rates to
some extent compared to the case where one would have constant oscillations, for which one
would need to know the oscillation frequency to measure exactly at a half-period to isolate a
one-way decay from the local to the global minimum without any tunneling back occurring.
For now, this is not feasible, as the theory in the sections above does not predict any oscil-
lations and additionally such clean oscillations are not expected on the D-Wave QPU due to
thermalization.

2.3.1. Noise Model

As the D-Wave QPU is an application based in reality, and not operating in an ideal setting,
there will, inevitably, be some sort of interaction with the environment and therefore noise
sources, which in the setting of quantum annealing might influence the couplings between
the spins and their couplings to the external magnetic field. This might appear as deviations
of the J and h parameters from the set value. To counter this, one needs to pre-calibrate
the D-Wave QPU before running the simulation by choosing a fitting noise model to first
determine the noise offset in the parameters and then correct it. Here it is presumed that
the noise is systematic and that it is stable over some time.

To estimate the noise on each parameter, one can model the system for each parameter,
either as a one qubit system for the h parameters or a two qubit system for the J parameters.
In the two qubit system, the qubits are connected by a coupling constant J; ; and each qubit
is subject to an external magnetic field h; or h;, as given by Eq. , and it is assumed that
all other qubits of the machine are only acting as environment noise on the pair, as depicted
in Fig. characterized by some effective temperature 7', describing a thermal equilibrium.
For the one-qubit system, this model simplifies to just one qubit which is subject to an
external magnetic field h; without any couplings. If the real system exhibits direct non-zero
couplings between the qubits in the modeled system and the environment, this will be noticed
as a deviation of the coupling constant in the two-qubit system from the set value toward
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Environment

h; h

Figure 2.3.: Many-qubit system approximated as a two-spin system with an effective envi-
ronment interacting with it through heat exchange. The two black dots are the
spins coupled through the coupling constant J with external magnetic fields h
applied to them independently.

the coupling strength to the environment. Additionally, in the one-qubit system, this will
only have an effect on the magnetization if the overall magnetization of the environment is
non-zero. If that is the case, the magnetization of the qubit in the modeled system will align,
depending on the sign of the coupling strength, toward or away from the overall magnetization
of the environment.

It is of interest to determine the couplings as well as the external magnetic field constants
acting in the system, in order to be able to compare them later on to the set values, to
quantize the noise, and, ideally, to eliminate systematic noise by calibration. For this, the
model in Fig. can be described by a semi-classical Boltzmann distribution measuring some
observable M with the according classical Ising-Hamiltonian H(s), which, as an input, uses
a spin-configuration s of the system (|1J) etc., where spin-up is +1 and spin-down -1), as
follows

(M) = % {E; MeBHE)  z = {E; e PH() g = 1 (2.45)
S S

where Z is the norm of the probability distribution and k; the Boltzmann constant. To deter-
mine the external magnetic field constants on each qubit one can compute the magnetization
of a spin in the one-qubit system as follows

1 e—Bhi _ oBhi
N = o—Bhisi _ - _ .
(si) = = {2;37,6 Si— = v tanh(8h;), (2.46)
S

with the according Hamiltonian. This can then be rearranged to retrieve the magnetic field
constant. For the retrieval of the coupling constant it is assumed that the systematic noise on
the h parameter can be neglected so that the true value of the h parameters can be assumed
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to be on average the set value, which is supported later in section [4| by the measurement
of the magnetization dependent on the set value. The same calculation is repeated for the
coupling constant starting from the correlator of the spin pair

1
(sisj) = Z Zsisje_ﬁ‘]ivjsisj = —tanh(8J;;), (2.47)
{o}

where the external magnetic fields is set to zero in the Hamiltonian. And again, by transfor-
mation one can retrieve the coupling constant.

With this, it is possible to compute the J and h parameters from the magnetization and
correlators and to compare them to the set values. In turn, this yields a list of offsets, which
are then used to calibrate the machine by subtracting them from the set values.

Remark 3 This is just a simplified model and does not incorporate non-linear noise, which
changes depending on the range of the parameters one has set. The procedure described
above attempts to group all possible noise sources on the D-Wave QPU into one, which is
then characterized by some effective temperature. Thus, the choice of this temperature is
crucial to determine the noise on the set values, by doing a sweep over several values of the
parameters and then fit the temperature in either Eq. or . One could potentially
get an even more accurate estimation of the noise for each parameter if one weren’t assuming
a single overall effective temperature for the system as a whole but rather different effective
temperatures, which are specific to the individual two-qubit systems, since the temperature
does not have to be the same everywhere.

18



3. Encodings

For the simulation of the false vacuum decay on the D-Wave quantum annealer, one needs to
encode a potential, which incorporates the false vacuum, into the J; ; and h; parameters of the
problem Hamiltonian in Eq. . This can be done in various ways but some are more suited
than others. In this chapter, the different possibilities are shown, explained and analyzed with
respect to their suitability for the given problem. The encoding itself consists of encoding
the modified Pd&schl-Teller potential of Eq. and therefore effectively simulating the
dynamics of the Schrodinger equation with the driving Hamiltonian being the kinetic energy
and the problem Hamiltonian becoming the potential landscape of the emerging particle.
Effectively, the problem Hamiltonian on the quantum annealer becomes

Hp = Hgpe + HQFT; (3.1)

where Hyy are the constraints that enforce an encoding, such as the domain wall encoding,
which shall be introduced shortly, while Hqpr encodes the quantum field theoretic potential
within the chosen encoding scheme. In the following sections, various methods are presented
and explored, for how to do those encodings which are then probed by performing runs on
the D-Wave Quantum Annealer Advantage 6.4. Additionally, before each run, the machine
is calibrated, as will be described shortly in chapter 4}, to minimize noise as much as possible.

3.1. Domain Wall Encoding

In this section, the domain wall encoding is introduced and probed for its suitability to
encode a two-dimensional potential, building on its earlier successful application in [AS21] in
simulating a false vacuum decay in one dimension. As it is a simple encoding, which also scales
very well with system size, as will be demonstrated later, it is efficient, yet straightforward to
implement. First, it was proposed in [Chal9] as a way of encoding discrete variables into Ising
spin chains for quantum annealing and later on, it was used in [ACS21] as a way to encode
the classical action into the quantum annealing Hamiltonian by discretizing and minimizing
it, and effectively computing its bubble profile of the bounce solution.

The approach is to encode a discrete variable into an Ising spin chain that incorporates
two domains of spin-up and spin-down. The change between the two domains is called the
domain wall and its position governs the value of the variable. As an example, consider a
discrete variable ¢;, with ¢g and ¢ being some arbitrary boundary values and N the number
of Ising spins. This variable can then be represented by

/_‘/]\i_\
11---100---0) < ¢(7) = ¢ + 1€ (3.2)

Xr
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where ¢(7) is the field as a function of time, r represents the position of the domain wall,
and £ = (¢n — ¢o)/N is the discretization spacing between the values. The Hamiltonian for

this is given by
N-1

How = =AY 007,y — N (of — o), (3.3)
i=1

which imposes a ferromagnetic bias on neighboring spins, aligning them into the same direc-
tion, while also creating two domains by aligning the outermost spins in opposite directions
as long as the condition A < A’ holds, i.e. as long as the energy of the configuration with
one domain wall is smaller than with no domain wall. This creates a degenerate groundspace
with energy Fy = —([N — 3]A 4+ 2A’) that incorporates all possible domain wall positions.
With N spins, only N — 1 values can be encoded due to the boundary conditions imposed
by A’. Given the Hamiltonian in Eq. , the J-couplings and h biases are given by

A
T = =5 Bir1g + dijr), hPW = N (i1 — din), (3.4)
assuming a symmetric Hamiltonian, as given in Eq. (2.44]), due to which the factor 1/2
appears in the J values. Reversely, the field value of a given configuration can be determined
by the following equation

N-1

=5 > (P +i)(071 — 7). (3.5)

=1

l\D\H

Assuming that the expectation value is taken only over domain wall states, only the term
corresponding to the position of the domain wall, the transition from one domain to the other
marked by a spin flip, contributes to the sum. While this term yields one, all other terms
evaluate to zero. This can be used to encode an arbitrary function, in this case a potential,
by inserting the discrete variable into the potential in the following manner

N-1
1 . 4 z

V(e(r) = 5 > V(o +i€)(0F, — of). (36)

i=1
There are two possibilities to continue from here on, giving the following couplings or h biases

. —3V (o +€) fori=1
Tt = SV (60ti&) (0 =0ij-1) T =4 5V(60+ (i = 1)E) = V(o +i€)] fori <N,
3V (@0 + (N —1)§) fori=N

(3.7)

as one can encode the potential either directly in the h biases, by simply grouping the same
spin operator in the sum above and then extracting the prefactor, or, as shown in section
into the J-couplings. It is important to mention that due to the energy spacing
between the eigenstates, given by AE = |2A], the maximum range between the minimum
and the maximum that the potential can reach is < AF or else, with respect to the domain
wall Hamiltonian, the excited states become more favorable in specific configurations.
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Figure 3.1.: Traverse path in a two-dimensional lattice to mimic a one-dimensional chain.

As was shown above, it is straightforward to encode a one-dimensional potential simply
by plugging it into Eq. for a spin chain. However, to encode a two-dimensional poten-
tial, one would either need to map a two-dimensional grid onto a one-dimensional chain or
use two domain wall spin chains to encode the two dimensions. There are advantages and
disadvantages for either of the two approaches. If everything was encoded in a single spin
chain, an advantage would be that it would be possible to ”turn on” the second well after
some time ¢ with the help of the h-gain function from the quantum annealing Hamiltonian,
as was done in [AS21], giving the system time to settle in the first well and then turn on the
tunneling. On the other hand, this would require the qubit numbers to grow quadratically,
proportional to the system size, and would also pose problems regarding symmetry, such as
breaking rotational symmetry, as will be seen, starting from the next subsection. Conversely,
if one were to encode the potential in two spin-chains, one would only be able to do it using
the J-parameters, as will become clear in section so that the second well would be turned
on from the beginning. However, this approach scales only linearly with the system size. In
the following, some methods for obtaining these are presented and compared with respect to
their applicability to the given problem by executing simulations with each of them. For the
simulations, A = 0.7 and A’ = 0.9 were used.

3.1.1. Zig-Zag

In this subsection, an approach is presented in which a two-dimensional potential is encoded
by first discretizing it onto a grid and then traverse it in a zig-zag like manner as shown in
Fig. . The two-dimensional potential can be encoded as follows: Given an N = Ny, - Ny,
where Ny and N, are the respective numbers of qubits per axis, the path can be described
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by the following curve
Cz:i €N (Yo + (i mod Ny)-n,¢o+ (i div Ny) - &) €R xR, (3.8)

where mod is the modulo and div the integer division operation. This returns a two-
dimensional vector with the respective field value for each axis, given the position 7 in the
spin chain. The div and mod operators are used to compute the two-dimensional integer
grid coordinates of the cells, which are then multiplied by the discretization spacing of the
corresponding axis in order to map them onto the discretized field values. In turn, these can
be inserted into the two-dimensional potential in the same manner as in Eq. yielding a
similar sum for the potential

N-1

V(o(r)) = V(Cz(i) (051 = a7), (3.9)

i=1

N =

which returns two ways of encoding the potential, either in the J or h parameters

Ty = %V(Cz(i))(5i,j —dij-1) (3.10)
—3V (4o + 1, $0) fori=1
WY = SV (Cz(i - 1) - V(Cz(i))] fori<N,  (311)

1
2
%V(@DO“’(sz_1)‘77,¢0+(N¢—1)-£) fori=N

where N —1 = Ny - Ny —1 = Ny - (Ny — 1) + (Ny — 1) is used. To probe this encoding
in terms of its behavior and suitability for the problem of simulating a false vacuum decay,
the potential from Eq. with [ = 1/2 is encoded as shown in Fig. and a reverse
anneal schedule is used as depicted in Fig. . The system size is taken to be 32 qubits per
axis, resulting in 1024 qubits used in total. The form of the potential was specifically chosen
to verify whether the rotational symmetry is preserved in the ground state for a rotation-
symmetric potential, as there should not be a preferred direction. No decay is expected in
this case as there is no second well and the quantity of interest is solely the form of the final
distribution.

The system remains in the ground state for most of the evolution until the final ramp up.
According to the adiabatic theorem, a sufficiently slow ramp should enforce ground state
prevalence. Both the ramp down and the ramp up were chosen to be 20us. However, this
timescale is not slow enough to avoid occupation of excited states during the ramp down,
while still allowing measurements to be performed on the system in a partially excited state,
describing the fictive particle with some kinetic energy different from zero in the encoded
potential, before thermal relaxation restores ground state dominance at s = 1 with zero
kinetic energy. In practice, thermalization effects (as discussed in remark [2)) that act while
s is kept low, help to reduce these excitations and thereby increase the likelihood of finding
the system in the ground state. At the minimum su;,, the system is kept for 80us to let it
thermalize and evolve long enough to be able to observe a probability spread over the space.

Two runs are performed, for which the only difference is the minimum value sy, in the
annealing schedule, which is done, on the one hand, to visualize the effect of different spmin
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by (2.43) with [ = 1/2. Eq. (2.44), in dependence of time.

Figure 3.2.: The discretized potential which was used for the simulation on the QPU, to
probe the zig-zag encoding, together with the respective annealing schedule for
the runs.

and, on the other hand, to accelerate the time evolution of the ground state state for lower
Smin, as the driving Hamiltonian in Eq. becomes more prevalent and with that the
”kinetic energy” of the fictive particle increases, allowing it to traverse longer distances in
the same amount of time, resulting in a larger spread of the probability density. The values
are Smin = 0.6 and sy, = 0.5. For the final probability densities, 20000 samples are taken, as
can be seen in Fig. , and only domain wall states are considered, by filtering out every
state that does not comply with the domain wall representation. The initial state is prepared
at (¢,1) = (0,0) in the domain wall representation. Since a reverse anneal schedule is being
implemented, this corresponds to the ground state of the problem Hamiltonian encoding the
above potential at s = 1, and the objective is to remain in this state until the final ramp
up. One can clearly see in both figures of that the probability spreads from its initial
position but with a clear horizontal bias, violating the expected rotational symmetry. The
larger spread of the probability in Fig. than in |3.3b| and the horizontal bias can be
explained by closely examining the curve depicted in Fig. that one uses to traverse the
grid. It is noticeable that the probability spreads along the given curve and this can be seen
in the figures[3.3] Due to the fact that the grid is encoded onto a one-dimensional spin chain,
the fictive particle can only move left or right inside this chain, which is given by spin flips at
the domain wall either to the left or right of it. While in the original two-dimensional system
the distance between a cell and its adjacent cells (excluding diagonally neighboring ones) is
the same, in the system with the zig-zag encoding the distances vary. The distance from a
cell to its left or right cell, counted in spin-flips needed in the domain wall encoding, also
known as Hamming distance, is one; but to the lower or upper cell it is Ny, which explains
the asymmetry with respect to the horizontal bias. Additionally, if the curve from Fig. is
superimposed onto the potential shown in Fig. and the resulting zig-zag is then pulled
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Figure 3.3.: Normalized result probability densities of decoded domain wall states in dis-
cretized space, obtained at the end of a simulation with the zig-zag encoding and
different s, values.

into the chain, along which the particle can move, the potential effectively reduces to a one-
dimensional landscape with multiple wells. With lower sy, values one is able to explore a
broader space, which in this context means to traverse a larger Hamming distance. Because
lower sy, means lower B in Eq. , and at the same time the potential becomes flatter,
the upper and lower cells also come into reach, as seen in Fig. but with lower probability
due to the distances that need to be passed being longer. All in all, this encoding does not
pose a suitable encoding in the current form due to the lack of preservation of rotational
symimetry.

3.1.2. Hilbert curve

To address the rotational asymmetry from the previous section, one can turn to space-filling
curves and try to keep the locality of the two-dimensional grid preserved in the encoding as
much as possible. The Hilbert-Curve [Badl3] is an example of such a curve. It is computed
in an iterative way and depicted in Fig. This procedure is well described in [Bad13] and
can be summarized as shown in Algorithm A visualization of the algorithm is depicted
in Fig. [3.4] where the initial iteration Iy, shown in the left grid, was obtained by combining
four empty squares to a large one and connect their midpoints in the manner depicted. The
start and endpoint are located in the lower left and right corner, respectively. With the
initial iteration given, the iteration process continues in the manner described in Algorithm
In Fig. three iterations are shown, where in each new iteration the previous iteration
is located in the four sub-squares, indicated by the dashed lines. The previous iteration in
each of the four sub-squares is then rotated and reflected in such a manner, that the starting
and end points of consecutive copies connect with each other. In this example, the global
starting point was chosen to be in the lower left corner and the global endpoint in the lower
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Figure 3.4.: Traverse path in a two-dimensional lattice in form of a Hilbert-curve to map to
a one-dimensional chain

right corner. This ensures a distinct curve that meets the boundary conditions. This process
is ended, when the desired grid size is reached. Possible grid sizes are limited to 22", with n
being the number of iterations.

For the purpose of encoding, the Hilbert curve is defined as

Cu:i€Nwm (Yo+xr(i) -n,¢0+yua(i) £ € RXR, (3.12)

where i is the position in the spin chain, and the two-dimensional vector with the respective
field value for each axis is returned. Using the functions zy (i) and yg (i) one can compute
the two-dimensional integer grid coordinates, in accordance with the Algorithm [1} With this,
similar to the previous subsection, the potential becomes

N-1
Vo(r) = 5 3 VCn(i)(ois — o) (313)
=1

after inserting the function for computing the Hilbert curve. From this, it is again possible
to extract the J-couplings or h biases, depending on which should be used for encoding the

Algorithm 1 Iterative construction process of the Hilbert-curve

1: Initialize iteration Iy as a base pattern

2: for each iterationn=1,2,... do

3: Create 4 copies of I,

4 for each copy do

5 Rotate and/or reflect the copy

6: Ensure orientation matches connection rules

7 end for

8 Connect the 4 copies end-to-end to form I,

9: Ensure that start and end points are properly aligned
10: end for
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Figure 3.5.: Normalized result probability densities of decoded domain wall states in dis-
cretized space, obtained at the end of a simulation with the Hilbert-curve encod-
ing and different minimal spyjp.

problem, given by

. —V(Cu (1)) for i =1
Jig = SV ECr@)0ig = dijm1), BT = $3V(Ca(i — 1)) - V(Cr(@)] fori < N .
V(Cy(N —1))) fori =N
(3.14)

To probe this encoding the same simulations are executed as before in Fig. [3.2] again with
32 qubits per axis resulting in 1024 = 2%® qubits in total and 5 iterations of the Hilbert
curve algorithm performed. The initial state is chosen to be at (¢,) = (0,0) with the same
argument as before. The resulting probability densities, taken from 20000 samples, can be
seen in Fig. It is clear that the same problems as in the zig-zag encoding persist: firstly
that it is not rotation-symmetric and secondly that it has a clear bias, in this case, toward
the left lower corner. This can be explained in the same manner as before for the zig-zag
encoding, as only the curve one takes to traverse the grid, but not the way of encoding,
differs. The problem here is also that one again uses a one-dimensional spin chain where the
distances between equidistant points on a two-dimensional grid are not kept when mapped to
a one-dimensional chain. The Hilbert curve keeps some locality as one can see in the figures
so that the probability density spreads in the local region (the local space is used for
exploration), but it also constrains it, as is clearly visible in the figures. What one can see
is that the probability stays in the subsquare where the state was initialized. In this case,
it is at (¢,) = (0,0), which belongs to the lower left subsquare depicted in Fig. When
looking at the center of Fig. at the intersection of all subsquares as indicated by the
dashed lines, one can see that the cells there are right next to each other in the grid but due
to the Hilbert curve they are far apart in the one-dimensional mapping, resulting yet again in
large Hamming distances between the encodings of these positions. One could argue that it
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3.1. Domain Wall Encoding

might just be a question of choosing the right curve to traverse the grid, but this example is
a good indication, that no matter which curve is mapped onto the grid, there will always be
regions where the actual distances will not translate well enough to mapped distances during
the transformation, thus resulting in non-negligible asymmetries.

3.1.3. Non-Metric Multi-Dimensional Scaling

The last method to map the two-dimensional grid onto a one-dimensional spin chain that shall
be discussed in this work is to use Non-metric Multi-Dimensional Scaling (NMDS) [Kru64],
as this does not lay a continuous curve through the multi-dimensional space, but tries to order
the points in a lower dimension depending on their similarities, more precisely, their distances
from each other in the higher dimension. Mathematically, if one defines the Euclidean distance
di j(X) = |y; — y;|* between points in some space X, then for d; j(X) > d; ,(X) the relation
d; ; (X ) > diy, (X ) should hold in the lower-dimensional embedding space X. In this case, this
results in a mapping from two dimensions to one, keeping the distance order between them as
much as possible. Note that the emphasis is on order and not distance, as the former is the
value of interest for the encoding. Only the distance order, not the distance itself, determines
the order of the spins on the spin chain. (If one is interested in embedding the absolute
distances instead of only keeping the order, one should use metric MDS.) This method is an
optimization algorithm which tries to minimize the following Stress function

N2

iy (F(dig(X)) = diy(X)
> iz dii(X)?

with f being a monotonically increasing function to ensure the aforementioned constraint for
the rank order in the form of distance. Additionally, the stress function should be invariant
to simple translations and scalings, which is ensured by the denominator in the square root.
X and X are the original RY and embedded RM™ space, which, in this case, will be N = 2
and M = 1, as the mapping is performed from two dimensions to one. The optimization
algorithm to find the optimal embedding is given by Algorithm [2| Executing this algorithm
for 16 grid points yields a mapping to a one-dimensional chain as can be seen in Fig.[3.6] It is
noticeable that while this method tries to preserve the distance order as much as possible, it
still does not yield a perfect translation to one dimension simply because of the dimensionality
reduction and the associated loss of information. This is also the reason why imperfect but
necessary mappings happen for the sake of stress minimization, so that e.g. the points 0
and 15 are close by in the grid but far away in the one-dimensional mapping, which justifies
the assumption that the same problems that already existed for the previous encodings in
subsections [3.1.1] and [3.1.2] will also be prevalent here. Nevertheless, when traversing along
the curve through the grid, given by the one-dimensional chain, it can then, in turn, be
characterized as

Cnmps ¢ € N = (Yo + 2nmps(2) - 1, 0o + ynvps () - ) € R X R, (3.16)

where the position in the chain is inserted and the corresponding coordinates in the grid are
returned. The resulting h and J-parameters are then given by Eq. (3.14)) only that the curve

8(93171'2,"' 7$naf) = y (315)
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Algorithm 2 NMDS optimization procedure with Euclidean distance d; j(X) = |y; — y;]?,
some initial space X, embedding space X and some stress function S.

1: Initialize random points in X

2: repeat
3: Perform isotonic regression of d; ;(X) on d; ;(X):
[+ arg}rcninf S(x1,29, .., Tn; f)
4: Perform gradient descent on S:
(x1,22,...,2p) < argmin S(z1,22,...,Tn; f)
T1,L2;, ", Tn
5: until stop criterion is met (e.g. S below threshold)

6: return ri,x9,...,Tn

function is exchanged for Cnyyvpg. With these parameters the simulation is carried out as in the
previous sections, i.e. with 32 qubits per axis, the potential and schedule depicted in Fig.
with 20000 samples taken and the initial state positioned at (¢,1) = (0,0). The resulting
probability densities can be seen in Fig. There is no clear bias to some direction, but
the result appears to be more rotation-symmetric. Nevertheless, due to the dimensionality
reduction of the mapping, close points in two dimensions are not necessarily close in one
dimension, as mentioned above. Meanwhile, the distance order between the points seems to
be preserved as much as possible, which can be deduced from the rotational symmetry of
the distribution. The probability density is very concentrated. This can be explained very
well by looking at the neighboring points in the one-dimensional mapping and noticing that
these are likely farther apart in the two-dimensional lattice so that the difference in potential
is larger than for close points, which is why the fictive particle would need more energy to
enter the region of the higher potential, making it less likely. As the energy of the particle
is conserved, the result is that it is less likely to encounter the particle in these areas, thus
minimizing the spread of probability. One could argue that by lowering smi, even further the
results would be better as more points would be reached, but the figures|3.7|show clearly that
the fictive particle is not exploring space in a physical manner, as it already tunnels during
the exploration due to the nature of NMDS. This might be a good solution for optimization
problems but not for quantum simulations, where it is crucial to reproduce the dynamics of
the real world to the greatest possible extent.

3.2. Coupled Domain Walls

As seen in the previous section, the encoding of a two-dimensional problem is not trivial and
poses many difficulties to overcome. The mapping from a two-dimensional grid onto a one-
dimensional spin chain is not satisfactory due to all the biases toward some direction because
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Figure 3.6.: Non-Metric Multidimensional scaling of a two-dimensional grid onto a one-
dimensional chain, which, within the chain, tries to group together the spins
that are neighboring in the lattice, in order to preserve as much information
about the locality as possible.

of the dimensionality reduction, thus one needs to turn to other possibilities of encoding this
problem. One such possibility is to use two domain walls accounting for two spin chains,
where each spin chain encodes one dimension, and the field value of each domain wall is
retrieved separately, using Eq. . The Hamiltonian in this case is given by [ABS22]

N-1

Hopw = —A Z (07071 + 07 noin 1) — AN (of — ok + 0k 1 — o3y), (3.17)
i=1

with N being the number of qubits per axis of a two-dimensional grid, resulting in the same
h and J-parameters for the encoding as before in Eq. but without having a coupling
between the N and N + 1 spin. The encoding of each variable in the potential is then
performed with its own respective domain wall, similar to before, which produces

V(O(r), () = § O Vido i o +m)(ofs —0))(0ksser —0ksy) (318)

This is basically just a concatenation of two single domain walls from the previous section
As stated above, in this case, the sigmas ensure that only the terms of both domain wall
positions contribute to the sum. From this, one cannot directly deduce the .J or h parameters
for the encoding in the Hamiltonian, so one first needs to transform the expression. This is
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Figure 3.7.: Normalized result probability densities of decoded domain wall states in dis-
cretized space, obtained at the end of a simulation with the NMDS encoding and
different minimal spin.

done in the following manner:

L N2 [ N-1
V(e(T),%(7)) = 1 z+1 Z V(¢o + 14§, o +j77)(0-N+_]+1 UJZV+j) (3.19)
i=1 | j=1
| N [ N
=3 oF — Z (i,7) O'N+] , (3.20)
i=1 j=1

where one first factors out one part of the sum, characterizing one of the domain walls given
by the sigmas, and rearranges the sum so that Eq. (3.7) can be substituted. The resulting
h(i,7) function is given by

—3V(¢o + i€, %0 + 1) for j=1
W (i, §) = L [V(go + i€, vo + (j — 1)n) — V(o + €, %b0 + jn)] for j <N .  (3.21)
V(o +i& ¢ + (N — 1)n) for j =N

Now, one only needs to apply the same procedure to the other sum, which is done by ex-
changing the order of the sums, factoring the h function into the inner sum and encoding
this into the h parameter, according to Eq. (3.7). This is done as follows:

N

FT,2DW - -
V(e(r) ZaNﬂZhu oiy —of) =y S TWeEs (3.22)

0]
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Figure 3.8.: Normalized result probability densities of decoded domain wall states in dis-
cretized space, obtained at the end of a simulation with the coupled domain wall
encoding and different minimal Spiy.

where J%FT’QDW is the encoded coupling between qubit ¢ and j, and given by

—%B(l,j) fori=1
[h(i —1,5) — h(i,j)] fori< N . (3.23)
h(N —1,5) fori=N

QFT2DW __
Ji =

As one can see, there are no h biases involved in the encoding of the potential, nor can
they be somehow artificially added through transformations or the use of ancilla qubits.
This presents the drawback that one has to encode the whole potential directly, without
the possibility of turning on an additional potential later during the simulation, which could
overlay the existing potential and effectively turn on the tunneling. The encoding is probed
for 32 spins per axis and 50000 samples, by using the same procedure as in the previous
section, depicted in Fig. with the only difference that this time, the sp;, values were
chosen to be smaller. The probability densities can be seen in Fig. [3.8] The need for smaller
Smin values can be attributed to the more complex way of encoding, which contributes to
the fact that the logical graph of the problem, given by the h and J parameters, which
needs to be mapped onto the physical hardware graph, is more complex, due to the all-to-all
couplings between the two domain wall spin chains, and needs to use more embedding chains
during the mapping. These embedding chains are also called logical qubits in [D-W21] and
their size correlates with the freeze-out point, the s value after which evolution ceases and
the system can be assumed to be quasistatic [Amil5, JAGT11]. In the logical graph, there
still is approximately the same number of parameters in the leading order as there is for the
one domain wall encoding from sec. i.e. N x N couplers between the two spin chains,
and 2 X (N — 1) couplers per spin chain for the domain wall encoding, with an extra four
biases for the spins at the ends. For the one spin chain, one needs N12D — 1 couplers plus
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two biases, where Nip is the number of qubits per axis in the two-dimensional grid. This
can be embedded as a direct chain on the hardware without using additional qubit clusters
as it is a simple geometry, but due to the all-to-all couplings in the coupled domain walls,
the embedding which maps the logical graph for the coupled domain wall encoding needs to
use more physical hardware qubits in combination with embedding chains. As the freeze-out
POINt S freeze—out i decreasing for larger logical-qubit cluster sizes [D-W21], one needs to lower
the smin value to be able to see the same dynamics as before. Apart from that, Fig. shows
a well defined distribution with the desired rotational symmetry.

3.3. One-Hot Encoding

Another encoding worth investigating is the One-hot encoding (also mentioned in [Chal9]),
which encodes a discrete variable into one-hot qubit, e.g. all qubits are pointing up while
one is pointing down. The position of the hot qubit then indicates the value of the discrete
variable, similar to the domain wall, where the position of the domain wall does the same. The
disadvantage of the one-hot encoding is that it lacks a meaningful notion of distance, as all
encoded vectors are located at the same Hamming distance from one another, with only two
spin-flips needed to transform one vector into another. This property also enforces rotational
symmetry in higher dimensions, which makes the encoding interesting to investigate, despite
its flawed distance representation. The Hamiltonian for the One-hot encoding is given for a
A >0 by

N 2
Zl_zaf] —1) [1—} Za I Za . (3.24)
1 \ A/ /

where IV is the total number of qubits. Here, the equation is already rearranged in such a
manner that the J-couplings and h biases can be obtained from it directly (for more details,
see sec. . This Hamiltonian ensures that at all times only one spin is in the |]) state,
with eigenvalue —1, as this is the ground state that has the ground state energy Ey = 0. It
also suppresses wrong configurations with more than one spin pointing down quadratically,
as the energy scales as F; = Ai%, where i is the number of excess spins pointing downward.
The J-couplings and h biases, obtained from the Hamiltonian, are given by

OH A oH N
o= > = .
JZJ hZ A |:1 2:| . (3.25)

It is immediately apparent that the h parameters scale with the system size which causes
the problem that the h values will need to be autoscaled on the QPU. This means that if a
value leaves the range defined by the annealer - in the case of the Advantage 6.4 the range
is [—4,4] for the h parameters - all parameters will be scaled down accordingly so that all
values lie within the range again. This indicates that as the system size increases, A takes
smaller values and therefore the encoding becomes weaker due to weaker couplings, which
results in more invalid configurations during the simulation. One can also turn this feature
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3.3. One-Hot Encoding

off, but then either the maximum A value or the system size is limited, depending on which
of the two one chooses to keep constant. Due to the all-to-all connectivity of the encoding,
not only do the h parameters scale with system size, which, in a two-dimensional grid, is
given by the squared number of qubits per axis for a two-dimensional lattice, but so does
the required number of couplings. This will also result in an increased run time for larger
system sizes. The encoded value is, conversely, retrieved by doing many measurements in the
o” basis of all qubits and computing the following expectation value:

1 N

(6(r)) = 5 > _(¢0+i6) (1 -a7), (3.26)
i=1

by simply determining the direction of all spins and applying the above formula, as only one

spin is pointing down and this is the only one contributing to the sum with an eigenvalue of

—1. Similar to the domain wall encoding, the potential can be encoded as

N
V(6(r) = 5 3 V(6o +i)(1 — o), (3.27)
=1

by simply inserting the discretized value into the potential and using it as a prefactor to
the corresponding sigmas. The couplings and biases are then extracted with the help of an
ancilla qubit, which is needed if the goal is to encode the potential solely in the biases or the
couplings without mixing them. Instead, one could write 1 = o;0;, but this would force the
encoding to use both couplings and biases for the encoding of a specific potential. The goal
is to be able to separately encode two potentials, with one being turned on for the whole
duration of the process, while the other is turned off in the beginning, and turned on later
using the h-gain. To that end, an ancilla qubit is necessary, which will be denoted as o( in
the state |1) with an eigenvalue of 1, which is achieved by applying a large negative bias to it.
The resulting potential can be rearranged in two ways with respect to an encoding in either
the biases or the couplings:

V(6(r)) = 3 Zf\il Vi(go + i€) (of — 07) for h parameters . (3.28)
3 SN V(o +i€) (0707 — aZ0f)  for J parameters
From the potential, the couplings and biases can be obtained as
1 IS Vg +i€) ifi=0
JUET _ 2y (o +i€)(6; 1 — O RQFT _ ) 3 2ui=1 ’ 3.99
1,7 2 (qbo g)( 3J 70) 7 —%V(QSO + Zf) else ( )

depending on which one of the two one wants to encode the potential in.

Unfortunately, as the encoding scales quadratically with the number of qubits per axis in
a two-dimensional grid, it is not feasible to run it for a two-dimensional grid, as given in the
previous sections. Firstly, because the number of all-to-all couplings, for a 32 x 32 grid with
N = 322, already amounts to a total of 32* couplings which need to be embedded onto the
DWave topology; as this problem of finding an embedding is NP-hard, it becomes increasingly
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expensive for larger graphs with many couplings. Secondly, due to the scaling of Eq. ,
the encoding becomes weak and results in a growing number of faulty configurations. This
can be seen if, for example, one sets A’ = —4 in Eq. - ) for a 32 x 32 grid. In that case
all the couplings will become .J;- OH = 51171 ~ 0, which is too small compared to the large h
biases of —4 and will not have a COHSlderable influence on the simulation.

3.4. Discussion

After extensive probing of different encodings, it is apparent that the most suitable encoding
for this task is the one from subsection in which two domain wall encoded spin chains
are concatenated and each one represents one variable, i.e. one dimension. It incorporates
all necessary symmetries such as being rotationally invariant under a rotationally invariant
potential, expressed by having no biases toward a specific direction in space; this being
in stark contrast to the exhibited biases of only one single spin chain encoded with the
domain wall encoding and using different traversing techniques of the two-dimensional grid,
as described in section Additionally, for the coupled domain wall encoding, the number
of qubits necessary scale linearly with the number of qubits per axis for a two-dimensional
system, thus allowing for the simulation of larger system sizes, which is not the case for the
single domain wall and one-hot encoding, as these scale quadratically with the number of
qubits per axis. Especially the one-hot encoding has an all-to-all connectivity between all
qubits, resulting in an enormous amount of necessary couplings for larger system sizes, which
are needed for two-dimensional simulations, which makes the embedding onto the hardware
graph rather impractical.

The coupled domain walls encode the distance in space using the Hamming distance of
spin configurations, which is crucial for physical problems depending on spatial coordinates.
This is not the case for the One-hot encoding, in which each pair of spin configurations
has the same constant Hamming distance of two, and therefore being unsuitable to encode
mechanisms such as tunneling in the way described above. For all of these reasons, the
coupled domain wall encoding will be used in further simulations on the QPU.

For future research it is noteworthy that one does not need to stop with the concatenation of
two domain wall chains but can perform it for arbitrarily many. This allows for the encoding
of higher-dimensional problems as the number of dimensions is equal to the number of domain
wall spins. Although it is currently not suitable for the simulation of dynamic systems because
one needs the same amount of multi-qubit interactions as there are dimensions, e.g. a three-
dimensional problem requires 3-spin interactions due to the encoding. Currently, there are
no devices yet which implement multi-qubit interactions greater than two, but there might
be some in the future.
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As the quantum simulations are run on a real device and which does not operate in an ideal
environment, it is crucial to ensure that the machine is well calibrated. While for regular
optimization problems this might not be a big concern, simulations of quantum systems are
rather susceptible to noise and as a consequence, poor calibration can produce unsatisfactory
results. Sources of noise can be diverse and range from stray magnetic fields of couplers
on the D-Wave QPU [HJL™10] that are too strong to defects in the material. The present
noise and the resulting bias in its presence can be demonstrated well by performing a simple
forward anneal for 120us, as depicted in Fig. by using the coupled domain wall en-
coding from subsection [3.2] without any potential, and setting the all-to-all J-couplings of
Eq. between the two domain walls, which will hereafter be referred to as inter-domain
wall couplings, to zero.

The essential idea is that, with the inter-domain wall couplings set to zero, one would
expect a uniform distribution over all coupled domain wall states with some random noise
at most, as depicted in Fig. [4.2b] as there should not be a bias toward some states because
of the absence of the encoded potential, which would have introduced an energy splitting for
the degenerate ground states. Instead one obtains Fig. as a result, which is obtained by
setting all inter-domain wall couplings to zero, while for Fig. these couplings have been
completely removed from the couplings list sent to the QPU, so that these are not taken into
account at all during the run. Asis apparent from Fig. there is an anti-ferromagnetic bias
between the coupled domain walls, as the points (¢, ) = (—1.87,2) and (¢,v) = (2, —1.87)
represent, respectively, the domain wall states |¢,v) = |-1.87,2) = |10---00) ® |11---10)
and [2,—1.87) = [11---10) ® |[10---00), indicating a prevalence of systematic noise. The
diagonal, on which the probabilities spread therefore contains the anti-ferromagnetic states
between the two domain walls. Due to the large impact on the results, it is of great interest
to understand the consequences from noise that one has to expect during the simulations, to
quantize them, and to correct for the noise effectively. This will be investigated in the next
sections, and methods will be presented on how to correct for these noises.

The following sections provide an overview of the approaches used to address the problem.
At first, the application of the effective temperature model shall be discussed to establish
a foundational understanding of the system by computing a canonical ensemble over all
possible configurations. Based on these estimations, shimming is then applied to correct the
previously determined imperfections and its limitations are discussed. Finally, spin reversal
transformations are identified as the most effective solution to the challenges considered.

Remark 4 To reduce noise and biases from specific embeddings of the problem on the physical
QPU, the sample acquiring mechanism has been modified so that it is split into batches of 100
samples, where for each batch a new embedding is computed before a run.
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Figure 4.1.: Simulation forward-anneal schedule for the calibration test runs.

4.1. Canonical Ensemble

For a better understanding and quantization of the noise seen in Fig. [£.2a] it is convenient
to define a model that reproduces the measured results. In this section, such a model is
constructed and its results are compared to the measurements in Fig. [£.2] One such possi-
bility for a model is to assume a thermal equilibrium and take a semi-classical Boltzmann
distribution, as described and elaborated on in subsection [2.3.1} The distribution is then
given by

1

1
pTI’LJL — ge_BE‘conﬁg(Tn’:n) Z — Z e_ﬁEconﬁg(m)n) B - (41)
m,n

with p,,, being the probability for a specific state, the indices of which will be explained
below, Econsig being the eigenenergy of the specific configuration, and 7" being an estimate
of an effective temperature. Here, instead of just looking at a small subsystem, as was done
in subsection the whole system is taken into account in which a configuration is given
over all qubits in the Hamiltonian. The Hamiltonian of interest is given by

N
Hp = Hypw +J' Y | 07051 (4.2)
2%

This is the problem Hamiltonian of the coupled domain wall encoding, combining Eq.
and . As mentioned above, no potential is encoded but instead a constant coupling J’
was assumed for reasons of simplicity, which represents a general mean offset in the couplings
between the qubits and accounts for the systematic noise seen in Fig. The resulting
eigenenergies Feongg(m,n) can be deduced by analyzing the following eigenstates of the above
Hamiltonian

m,n) = [11---1 0---0)®|11---10---0), (4.3)
— —— —_—
xXm  x(N—m) X(N—n) Xn
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Figure 4.2.: Normalized probability densities, obtained from the QPU, with 50000 samples
taken to check for some bias arising from uncalibrated couplings or h-biases. One
can clearly notice an anti-ferromagnetic bias in Fig. given by the probability
being spread over the diagonal. For the run 32 qubits per axis and the schedule
from Fig. were used without any potential encoding.

where there are two domain walls with the first having m ones and the second having n
zeros. These eigenstates are clearly degenerate ground states of Hopyy, as they represent
two separate domain walls, thus having the same constant energy offset; but taking into
account the last part of the problem Hamiltonian (which can also be regarded as a small
perturbation), the energies undergo a splitting due to the error contribution. The splitting
can be calculated as

En(m,n) = [J'(N —n) = Jn]m+ [-J' (N —n)+ J'n] (N —m) (4.4)
=—J [nm+ (N —n)(N —m) — (N —n)m — (N —m)n] (4.5)
= —J'(N —2m)(N — 2n), (4.6)

where all ferro- and anti-ferromagnetic contributions between the two domain walls are
summed up with the correct sign in front of .J’ in the first line and then rearranged to a
simpler form. Combining the general offset in the energy from the domain wall constraints
and the energy splitting leads to the following equation for a specific configuration:

Econﬁg(m, n) = 2Fpw + EA (m, n) (4.7)

= —2A(N —3) —4A — J' (N —2m)(N — 2n). (4.8)

However, for the computation of the Boltzmann distribution, this constant energy offset
can be neglected, as it is cancelled by the normalization. Consequently, only the energy

splitting terms are relevant to the final distribution. With this in mind, using Eq. ,
one can numerically compute what would be expected if there were a slight mean offset in
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Figure 4.3.: Numerical computation of the Boltzmann density distribution for a mean error
of J/ = 1.9-1073, T ~ 187.4mK, the energy is given in units of [E] = 5.7+10724J
and N = 32 qubits.

the J-couplings in the real device. Doing so for J' ~ 1.9 - 1073, which introduces an anti-
ferromagnetic bias, an estimated effective temperature of 187.4m K, an energy unit obtained
from Fig. at s = 1, and 32 qubits per axis, one obtains the distribution depicted in
Fig. It is noticeable that this distribution is similar to the one from Fig. which
indicates that the systematic noise observed there can, in fact, be modeled by an error arising
from the coupling terms between the two domain walls.

Next, it will be investigated whether the assumption of an overall mean error on the
couplings, denoted by J’, is valid, or if one needs to model it by examining each coupling term
and its error individually. To do this, one can determine the magnetization and correlator for
each qubit and for each coupling between two qubits on the real device by performing a run
with a forward-anneal schedule and setting all A~ and J parameters on the machine to zero,
then averaging over all measurements. If only random noise is present, the magnetizations
and correlators are expected to form a normal distribution around zero. Conversely, if there
is a systematic offset, this would manifest itself as a shifted mean in the distribution.

Applying this procedure to the D-Wave QPU, with a forward-anneal length of 400us and
20000 samples, yields the magnetization and correlator distributions over all individual qubit
magnetizations and couplers, as displayed in Fig. For both the magnetizations and the
correlators one can see that the values measured on the QPU are normally distributed around
a mean, which is —0.016 for the magnetizations and —0.02 for the correlators. While for the
magnetizations the normal distribution is approximately symmetric around zero, due to the
larger standard deviation of the magnetizations, making them more balanced in terms of
possible negative and positive terms, the same cannot be said for the correlators. In contrast,
the correlators are leaning more toward the negative region given by the negative mean and
smaller standard deviation, supporting the theory, considered in combination with the normal
distribution of the magnetizations being symmetric around zero, of an anti-ferromagnetic

bias. Using Eq. (2.46)) and (2.47)) and rearranging them for J and h, one can infer that the
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(a) Magnetization of all qubits on the QPU.  (b) Correlators between all coupled qubits on the
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Figure 4.4.: Normalized probability densities of magnetizations and correlators measured on
the DWave QPU by doing a forward anneal for 400us, taking 20000 samples and
having all biases and couplers of the QPU set to zero.

reconstructed mean values for these runs were greater than, yet close to, zero. Firstly, this
fulfills the condition required by Eq. , that the h parameters can be neglected when set
to zero and, secondly, it supports the assumption that one can assume a mean J' offset as
was done above, accounting for the systematic noise, resulting in the anti-ferromagnetic bias
one could observe in Fig. [f.2a] With this, it is now possible to correct for the systematic
noise in the couplers, which will be done in the following section.

Remark 5 These noise statistics have been performed for a static set of parameters during
the simulation runs which were set to zero. It is important to keep in mind that the observed
offset can be dependent on the set and may vary for different values of h and J. These
methods are not intended to quantify noise absolutely for specific devices, as it may change
over time and depends on many factors; but rather it is there for temporal quantization and
qualitative correction either during or before a run. Nevertheless, during the course of these
experiments, the noise behaved in quite a stable manner, did not change much and always
exerted the same anti-ferromagnetic bias.

4.2. Shimming

In the previous section, the systematic noise has been examined and it could be concluded
that it can be modeled as a systematic offset, primarily in the J couplings. One might try to
correct for that by subtracting the offset from the affected couplings and biases. For this, one
inverts (2.46)) and (2.47) for the respective parameter and obtains the following equations

J;j = arctanh(— (dej))/ﬁ h; = arctanh(— (07))/5. (4.9)
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Algorithm 3 Iterative shimming procedure with forward annealing

. Define fixed parameters {hfi*ed}, {Jf;‘ed} and initial guess for effective temperature T’
repeat

Perform a forward anneal with {hfixed} {Jiff;-‘ed

Compute magnetizations and correlators for all qubits and couplers

Compute updated h;-biases and J; j-couplings according to Eq.

Compute correction terms:

___ zcomp fixed .. __ gcomp fixed
Ai=h; —hi™ Ay =Ji 5 = i
T: Subtract correction terms from fixed parameters:

new __ 7 fixed ) new __ 7fixed o
h‘i — hl - AZ? Jl,] — le] - A’L,j

new
Z7J

®

Perform a forward anneal with updated parameters {h}*V}, {
Update guess for effective temperature T' based on results

10: until mean of resulting normal distributions for the magnetizations and correlators equals
the expected means depending on the set {hf*°d} and {Jff;-‘ed

©

There is a caveat to this approach: one has to estimate the effective temperature which is
crucial for getting an accurate correction for this method. The temperature will be estimated
and adjusted by comparing the magnetization and correlator distribution curves, whose forms
are similar to Fig. , to the expected curves, which are normal distributions with a mean
of zero. This is done in an iterative process, by performing a manual form of gradient descent
which, in turn, will also yield the correction terms for the calibration. This procedure is
summarized in Algorithm [3] in which the temperature is the fitting parameter. This results
in a set of correction terms, which then in turn will be used, as in line [7] of Algorithm [3] as
a calibration for each run on the QPU. Performing the procedure described in Algorithm
by setting the fixed set of parameters for h?xed and Jiff;-‘ed to zero, using a forward anneal
length of 400us and taking 20000 samples per run, produces the final magnetization and
correlator distributions that can be seen in Fig. and The energy unit was taken to
be approximately [E] = 5.7%10724J, according to Fig. with a final effective temperature
of T' =~ 63m K, which was retrieved after several iterations of comparing the given distribution
to the expected distribution. One can see that for both the magnetizations and correlators,
the mean shifts closer to zero, the expected mean for biases and couplers set to zero. Another
observation one can make is that the deviations in the normal distributions increased, which
might be explained by the manner in which the corrections are currently performed. As they
are performed individually for each bias and coupler, the value which is used for the individual
correction is fixed, while the real error on the machine for a run is likely probabilistic and
governed by the distributions given in Fig. [4.4] Thus it is possible for the correction value to
be, for example, u — 20 for the qubit ¢ (analogous for the couplers), where p is the mean and
o is the standard deviation, but the actual error during this run on this bias might already
be around p + 20 resulting in an overall error of 40 instead of canceling, thus spreading the
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Figure 4.5.: Magnetization and correlator distributions after applying an individual per-
qubit/coupler correction and an overall mean offset correction, which constituted
computing the mean J offset of the couplers and subtracting it from all couplers.
The mean offset terms were both of order ~ 1073, while the per-spin/coupler

1073 ---1072, all computed with a guessed

effective temperature 7'~ 63mK and an energy unit of [E] = 5.7 * 10724J ac-

cording to Eq. (4.9).

correction terms ranged between

distribution on both sides and resulting in an overall larger deviation. This problem can
be solved easily by correcting with the mean over all computed h; and J;; offsets, given
in the figures [£.4] by the mean of the distributions, instead of correcting every bias and
coupler individually. In turn, this should shift the distribution without having an effect on
the standard deviation and avoiding overcorrection. The resulting distributions from these
modifications can be seen in figures and in which it is apparent that the standard
deviations for the distributions stay the same, while the means shift toward zero.

Applying this calibration to the simulation of the coupled domain wall encoding, which
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Figure 4.6.: Normalized probability densities after re-executing simulation runs of Fig.
with regular and overshooting calibration. One can see a diminished antiferro-
magnetic bias in while seeing a ferromagnetic bias in [4.6b| Runs have been
done taking 50000 samples for 32 qubits per axis.

is depicted in Fig. together with the annealing schedule from Fig. results in the
probability density for the domain wall states depicted in Fig. Here, it is visible that
there still is an anti-ferromagnetic bias, but it is much weaker when comparing the magnitudes
of the probability densities to Fig. which shows that the calibration is showing the
desired effect qualitatively. If the calibration for the J-parameters (as shown in Fig. this
is the main contribution to the anti-ferromagnetic bias one observes) is ’overshot’ - meaning,
for example, that one doubles the mean correction term for the J-parameters to achieve a
larger correction toward the ferromagnetic bias - one can see in Fig. [£.6D] that one indeed
retrieves a probability density with a ferromagnetic bias. This implies that somewhere in
the range [J,1.25 - J], with J being the mean J correction term, lies the sweet point, where
there is neither a ferro- nor an anti-ferromagnetic bias in the probability densities. Adjusting
the correction term to 1.125 - .J one retrieves the probability density in Fig. which
closely resembles the desired uniform distribution. Yet it does not perfectly conform to a
uniform distribution, seeing that the edges of the grid have a slightly higher probability than
the center, which was also already prevalent in Fig. [4.2b] As [CCD*22] shows for the one-
dimensional case, this parabolic distribution arises when taking into account noise arising
from stray magnetic fields of free spins and defects in the material of the QPU. Because in
the given case two one-dimensional chains are linked, it is highly probable that this effect also
occurs in this setup in form of higher probabilities at the edges, especially at the corners where
the superposition of the two parabolas is maximal - even after calibration, as in .
This persistency in the noise originates from its statistical nature with an average of zero, so
that the main contributing part is the variance of it in contrast to systematic noise, where
the offset of the mean from zero is the driving force and can thus be corrected with the above
described procedure. Another observation one can make is the absence of probability in the
top right corners of figures and which indicates a bias in the ferromagnetic regime
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4.3. Spin Reversal Transformation

toward the mostly all-up domain wall state. This can be explained by some sort of residual
offset in the h-biases which has not been fully corrected, pushing the system toward the
state in the lower left corner, while not having a significant effect on the anti-ferromagnetic
states, as it does not introduce an energy splitting between them, due to their symmetry.
This shows that one can indeed correct the shown bias in Fig. to some extent with the
proposed procedure. Nevertheless, it requires several iterations and a careful estimate of the
temperature, and even with that, it is not certain if these correction terms are valid for the
whole h and J ranges that are possible on the QPU, which also might explain why, after
retrieving Fig. one still has to adjust the temperature once more, as shown in Fig.

Remark 6 For future reference: The effective temperature for the qubits can be estimated as
described in [JAGT11] (Supplemental Information, section II.D page 8.), in which, for every
qubit, a sweep over an h range is performed, the magnetization is computed from the QPU
data, the curves are shifted to have the same centers and then the averaged data is fitted to a
hyperbolic tangent as depicted in Fq. , in which the temperature is the fitting parameter.

This method would not replace the iterative process described in Algorithm[3, as the need
for verification of the resulting correction terms, based on the deduced effective temperature,
is still necessary. During this verification, the need for further refinement might still arise.
That is why the method mentioned in the previous paragraph constitutes an additional step,
which goes beyond the extent of this work.

4.3. Spin Reversal Transformation

The procedure of the previous section already yields satisfactory results with respect to
mitigation of errors but it includes many caveats, such as costly retrieving the effective
temperature in many iterations. It also does not provide certainty of the calibration by just
looking at the correlator and bias distributions, as is apparent from the mean correction
coupler term requiring readjustment during the simulations of the coupled domain walls to
get the expected distribution. Lastly, it is not clear if this calibration also holds for h and
J parameters other than the ones for which the calibration has been performed. For these
reasons, it is of great interest to explore other correction methods. One such method is
the Spin-reversal transformation [BRIT14], which includes running the problem in several
batches while simultaneously applying gauge transformations to random qubits. It has the
great advantage that, firstly, it does not rely on any fitting and, secondly, it is simple to
implement. The only caveat of this method is that it does not allow for quantization of
the noise and the estimation of the effective temperature on the QPU, which, here, is not a
problem, as the objective is to perform error mitigation and reduce any noise which could
bias the simulations.

Given a problem with N qubits, the transformation consists of flipping qubits by a ran-
domly chosen bit string g € {£1}", where +1 leaves the qubit as it is, and —1 flips its A bias
and couplings according to

hi — gih; Jij — 9i9jJi ;- (4.10)
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(a) Magnetization of all qubits on the QPU.  (b) Correlators between all coupled qubits on the
QPU.

Figure 4.7.: Normalized probability densities after applying the Spin-Reversal transformation,
measured on the DWave QPU by doing a forward anneal for 400us, taking 20000
samples and having all biases and couplers of the QPU set to zero.

This transformation has no effect on the problem and the dynamics of it, while the results
of the transformed and original problem are still related through s; = g;s; with preserved
energy. As a consequence, when averaging the results over many batches, the systematic
noise offsets can be averaged out. Having a look at the problem Hamiltonian of Eq. ,
one can see that it can be written as the sum of many local Hamiltonians over two qubits
given by

l hy hy
Hp =) Jijoio} + 5x:07 + 52007 (4.11)
[2¥} HVL
Y

Analyzing this local Hamiltonian in terms of how it behaves under the gauge transformations,
one can first group the possible random bit strings into two groups of equal probability, i.e.
the anti-ferromagnetic transformations (g;,g;) € {(1,—1),(—1,1)}, where only one spin is
flipped, and the ferromagnetic transformations (g;, g;) € {(1,1), (—1, —1)}, where either both
are flipped, or none are flipped. Then with this, one can compute the average over an AFM
gauge transformation and an FM gauge transformation of the local Hamiltonian, denoted by
a line over the local Hamiltonian

L,J i ff
Hi,j =3 [(_JM + JZJ- )(—afajz-)} + B} [(Ji,j + sz,j )(Ufaj) = Jmafoj, (4.12)
antiferromagnetic ferromagnetic

where Eq. (4.10) along with the back-transformation o7 = g;0.* were applied. As expected,
after averaging, the constant systematic offset Jfg is successfully removed. Again, it is

assumed that there is a constant systematic offset Jggf on the individual couplings, similar
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Figure 4.8.: Normalized probability density after re-executing simulation runs of Fig.
and applying the Spin-Reversal transformation. For the run 32 qubits per axis
and the schedule from Fig. H were used without any potential encoded.

to Fig. [4.4b] which is responsible for the bias. This assumption is backed by the findings
of the previous section, where one can clearly see, despite the fact that it was done for the
whole ensemble over all magnetizations and correlators, that the noise is normally distributed
around some mean offset, which is represented by the constant offset in the equation above.
Analogously, the same can be done for the spin biases, for which there are only two possible
transformations g; € {1, —1}, resulting in the following average over AFM and FM gauge
transformation

1 h; L[ h off | = hi
) ()] e

As this holds for the local Hamiltonian, it is extendable to the global problem Hamiltonian,
which shows that the systematic noise can be corrected completely in this way, as long as the
assumption of a constant systematic offset holds.

Repeating the same simulations in combination with the spin reversal transform as in the
previous section for the magnetization and correlator distributions, with a 400us forward an-
neal, 20000 samples and all biases and couplings set to zero, yields the distributions depicted
in Fig. Here, one can clearly see that the mean for the magnetization as well as for the
correlators is centered around zero, and even the deviations decrease compared to Fig.
likely because this method averages out the error on an individual spin/coupling level and
not for the whole ensemble of all spins and couplers in the form of a single constant correc-
tion term, resulting in less over- or under-correction. This effect could probably have been
achieved by extending the method of the previous section onto the individual spin/correlator
level by computing the distributions for every single bias and coupler, but this would have
been more demanding in comparison to the gauge transformations. Applying the spin rever-
sal transforms to the same simulation of the coupled domain wall as in Fig. in which one
sets the coupling terms between the two domain walls to zero, results in Fig. Here, one
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can clearly see that the state distribution follows an almost uniform distribution, without a
bias toward any particular direction, since the distribution appears to be rotation-symmetric,
though with slightly higher probabilities at the edges than at the center, as also noted in the
previous section. The latter effect should cease to be the dominant contribution once a poten-
tial is encoded, splitting the eigenenergies of the degenerate ground-state space, so that the
main contribution to the final probability density comes from the encoded potential, instead
of fluctuations in the couplers or h-biases. All in all, the spin reversal transform should be
sufficient to eliminate the direction bias in the following quantum simulations. Therefore,
this work shall restrict itself to only using this technique going forth, as for the purpose of
this work it is superior to the technique presented in the previous section.
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5. Numerical solutions

To get a sense of what to expect from the false vacuum decay runs on the QPU, which will be
done later in chapter @ it is of great interest to solve Eq. (2.38]) numerically for the following
potential in two dimensions

%V(gﬁ) = I(I+ 1) tanh?(|¢]) — ZM + <—g(g + 1)sech?(|¢ — b]) — gW) ,
h ol ¢ — bl
Vi v,

(5.1)
which also will be used later on for the QPU runs. The potential is a combination of two
wells, V; and V;, governed by Eq. , where m and c are set to one for simplicity and tanh
is expressed as a sech by the 1 = tanh(x)? + sech(x)? relation, and b is the position of the
second well in two-dimensional space. As the simulations of the one-dimensional quantum
field theory are performed for two fields simultaneously, the equations of motion in Eq.
simplify to
_ 73
o2

—

(%) -V (5.2)

i=¢(t)
The derivative of the potential can be obtained by computing the derivative for the two single
wells and then combine them accordingly. The derivatives should only differ in some offset
in the field value, as the description of the two wells are connected by a transformation using
the aforementioned trigonometric identity. Thus, the derivatives for the wells are given by

t

Ve (14)(@) = 2n(n + 1) tanh(\é’nsech?u&n% - ; Mf’ 4 manh<|$|>|q§ﬂ,, (5.3)

and combined, Eq. 1) becomes ¢(t) = VVi(¢) + ﬁ‘/},(q;— b). An example of the potential
can be seen in Fig. where the parameters are chosen to be b = (2.5,2.5), g = 3/4
and [ = 1/2. This form of the potential is picked, because the analytical solutions of the
Schrodinger equation for the single wells are known, as discussed in subsection[A.2.2] and also
because, when combining them, it is simple to model a local and a global minimum. Distinct
global and local minima are necessary to observe a false vacuum decay of the metastable
state from the local into the global minimum, as otherwise one would expect non-negligible
oscillations, as described in remark [} without the possibility of trapping the probability
through thermalization (see remark [2]) in the global minimum after tunneling has occurred.
This should effectively simulate the open potential as in Fig. mitigating oscillations,
and allowing for a more precise computation of the decay probability per unit time. Still,
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Figure 5.1.: Potential of Eq. 1) in two dimensions, with b = (2.5 257 g = 3/4 and
1=1/2.

one has to keep in mind that oscillations will occur nonetheless, as the thermalization process
does not happen instantaneously.

The process of solving the integral of Eq. numerically consists of two steps, repeated
in a loop for different positions of the second well. For all b in some predefined array:

1. Compute the dominating classical path of the particle from ¢, to ¢, with the Velocity-
Verlet algorithm.

2. Solve the integral of Eq. (2.38) with the previously computed path.

which will be addressed in the following sections.

Remark 7 Rewriting the potential in Eq. to incorporate a sech instead of a tanh also
entails that the eigenenergies transform from 2TmE =1 — —I?. This is a direct consequence
of inserting tanh(x)? = 1 — sech(x)? and absorbing the resulting constant of 1(I + 1) into the
enerqgy term.

5.1. Velocity-Verlet Algorithm

The Velocity-Verlet algorithm [SABWR2] is a widely used numerical method for integrating
Newton’s equations of motion, particularly in molecular dynamics simulations [KMV22]. It
offers a balance between computational efficiency and accuracy by updating both positions
and velocities of particles in a time-reversible and symplectic manner. In comparison to basic
Euler methods, which are the naive way of solving differential equations, the Velocity-Verlet
approach minimizes the accumulation of numerical errors over long simulations, preserving
energy more effectively. By incorporating information about the system’s accelerations at
both the current and predicted positions, this algorithm constitutes a robust technique for
simulating the dynamics of physical systems. This is crucial for solving Eq. , due to
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5.2. False Vacuum Decay

the dependence of the integral on the classical path from ¢, — ¢y, governed by the potential
of Eq. (5.1) and the equations of motions in Eq. (5.2]).

For some given initial values (5(0), 5(())) = (50, 50), the algorithm starts by computing the
velocity at a given half-time step, which is given by

S(t)AL, (5.4)

§(t+5) =d0+;

2

where At denotes the length of a single time step. This is then in turn used to update the
field to the new value, which is done using

— —

Bt +At) = d(t) + & (t + A;) At = 3() + 6(t) + =b(t) AL, (5.5)

1
2
Having the newly updated field value, this will be used for the derivation of the acceleration
at t + At

—

ot + At) = ﬁv‘ , (5.6)
F=4(t+A1)
which is then used for the computation of the updated velocity at a full time step
- o At 1= - 5 t) + 5 t+ At
o(t+ At)=¢ (t + 2) + §¢(t + At)At = ¢(t) + o(t) (;52( )At. (5.7)

This method is mathematically equivalent to the Verlet algorithm; however, it possesses sev-
eral advantages, such as computing the field and velocity at the same time, and explicitly
keeping track of the velocity without the need of extra computations and estimations, result-
ing in a more stable description of the system. Additionally, it mitigates numerical round-off
errors due to the absence of subtractions of large, nearly equal numbers, and instead com-
putes the updated values in small incremental steps. Moreover, due to the independence of
the formulas on the previous time-steps and its reliance only on the current time, the algo-
rithm is self-starting and does not require another method to compute the first time-step.
Finally, the local truncation error for this method amounts to O((At)?3) while the global error

is of order O((At)?).

5.2. False Vacuum Decay

The False Vacuum Decay becomes apparent when studying several iterations of a metastable
decay for the potential given by Eq. , for which the initial state is positioned in the
local minimum, at various positions of b, and then plotting the results against the distance
between the local and global minimum. For each iteration, as described above, the classical
path is computed using the Velocity-Verlet algorithm and then Eq. is being integrated
numerically with the trapezoidal rule being applied. The initial values in each run are the
field value at the local minimum and a velocity of zero. It is important to note that the
local minimum for small b is not necessarily at |(5] =0, as the wells are shifting toward each
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Figure 5.2.: Numerical results for the computation of the decay exponent from Eq. ,
in combination with Eq. (5.1)), where [ = 1/2 and k = 3/4 were chosen. The
computed values are given by the crosses and the dashed line represents a linear
fit for the last ten values.

other due to the superposition of the potential, as can also be discerned weakly in Fig. [5.1
That is why it is necessary to compute the position of the local minimum at least for small
values of b at the beginning of each run, instead of setting it to the expected value for a single
well at 0. After the computation of the position of the local minimum, it must be verified,
as it is possible that, due to numerical inaccuracy, the computed value does not coincide
precisely with the position of the actual minimum, and shows a slight deviation. This might
induce, quite evident in the example of the inverted potential, a gradient toward the opposite
direction of the second well. Yet it may be countered by adding a small offset toward the
global minimum.

Having the initial state (¢(0), ¢(0)) = (¢q,0), the classical path is computed until it reaches
the escape point on the other side of the potential barrier with a velocity of zero, as given by
the boundary conditions in Eq. . One caveat remains: when the two wells are close to
each other, there is no barrier which forms for small l;, and the square root becomes imaginary
in Eq. Hence the imaginary part of the ground state energy vanishes and Eq.
becomes zero. For such cases, the distinction between local and global minimum and thus
the distinction between wells is lost and the previous metastable state ceases to exist. During
the numerical computation of such a case, one proceeds by setting the decay exponent to
zero if encountered.

Executing this procedure with a time-step length of At = 1073 and sufficiently small values
of b along the diagonal from (0,0) to (5,5) (the specific choice of b should not matter, as
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5.2. False Vacuum Decay

the potential is rotation-symmetric around each well) helps to minimize error accumulation,
as the classical paths remain sufficiently short. With [ = 1/2 and g = 3/4 chosen as the
potential in Eq. , one obtains Fig. where the exponent is plotted against |l;\ It is
clear that the behavior can be described by a linear function, as given by the dashed red line
in the figure, while the residuals between the fit and the numerical values are close to zero in
comparison to the actual values. The residuals exhibit an oscillating behavior, which might
be explained by a systematic error originating from the numerical techniques used to solve
the integral. Inserting this linear behavior into the decay probability per unit time v from
Eq. results in a function showing exponential decay and depending on the distance
between the local and global minimum.

51






6. Quantum simulations

With the theoretical background in place as well as its predictions for the decay experiments,
this chapter shall now explore and probe theory and predictions by performing several exper-
iments on the D-Wave Advantage System 6.4. For each run the spin reversal transformation
of section shall be used here, as it was found to be the most efficient and simple error
mitigation technique, combined with the coupled domain wall encoding of subsection
The experiments will consist of simulating the double well potential from Eq. , with
l=1/2, g =3/4, m =1 and ¢ = 1, but with varied positions of the global minimum, in the
same diagonal manner as was used in section Additionally, to test whether the rotational
symmetry of the problem is conserved during the simulations, the global minimum will be
moved along a spiral path. For each position in the run where a diagonal shift is performed,
there is a corresponding position in the spiral shift which has the same distance to the local
minimum.

In the following, the methodology will be explained on how the simulation runs on the
QPU are performed and how the decay from the local into the global minimum is obtained,
based on the probability density from experimental data. Then, in the following section, both
decay rates, for the diagonal as well as the rotational shift will be analyzed and compared to
each other. And lastly, the question will be raised on whether the process which takes place
is due to the quantum nature of the annealer, or else might be explained by thermal effects.

6.1. Methodology

In this section, the methodology of how the experimental simulation runs have been performed
on the D-Wave QPU is going to be explained, along with the post-processing of the data, as
well as how the decay of the metastable state is extracted. Firstly, each run is performed using
the spin-reversal transformation which needs to be run for a sufficient amount of batches,
which is dependent on the system parameters. Secondly, the coupled domain wall encoding
is employed and only configurations which represent valid coupled domain wall states are
used after the run, whereas non-valid configurations, which, as shall be demonstrated, make
up around 10% of all states in the following simulations, are filtered out and not used at
all. Afterwards, the probability is renormalized over the remaining states. The annealing
schedule for each run will consist of two linear ramps, down from s = 1 to sy = 0.35 and
then reversely from sy, = 0.35 to s = 1. Each ramp process takes 20us. In the meantime,
the system is kept at syin = 0.35 for 60us, allowing the decay to take place. The initial state
at s = 1 is the domain wall state, representing the position of the local minimum.

There are several ways to determine whether the probability mass should be classified as
belonging to the local or the global minimum based on the corresponding potential. One
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Figure 6.1.: Exemplary overall probability density with the individual contributing peak dis-
tributions trapped in the single wells on the cross-section where the two peaks
lie.

option is to apply a rather simplistic approach using masks; a process in which, in this case
with two wells in the potential, each cell is assigned to one of two clusters, i.e. the masks
representing each of the wells. This can be done either using a clustering algorithm, assigning
each cell to the closest cluster center, which are the known positions of the potential wells,
or by splitting the surface using a straight line, which is computed based on some predefined
procedure. One such procedure is that one takes the vector b connecting the two wells, so
that at some place on the vector there is the maximum between the wells; the maximum is
computed, and the plane in which the maximum lies and to which the connecting vector is
orthogonal effectively splits the space in two halves, in each of which a well is located. These
masks would then be applied, in turn, for computing the peak clusters in the probability
density.

The procedure described in the previous paragraph, on the one hand, requires prior knowl-
edge of the positions of the wells in the potential, which one has, but on the other hand would
also neglect the experimental data, which might show a slight shift in positions for the peaks,
relative to the well positions.

This approach appears to be simple, but it has two caveats, the first one being one of the
points just made: if the two peaks are close to each other, they will start to overlap and
the probability between them becomes indistinguishable, making it impossible to determine,
to which of the peaks it belongs. An illustration of the overlap is provided in Fig. [6.1] in
which for reasons of clarity a cross section is taken in the plane perpendicular to the ¢—
1-plane and containing the vector connecting the two peaks. If taking the straightforward
approach with the masks, probabilities might be assigned to peaks they do not belong to, so
that, for example, if splitting the area at approximately ]5] = 2, both peaks will be assigned
probabilities of the other peak, thus skewing the tunneling fraction.

Secondly, it does not necessarily yield reliable results for the computation of the decay

-

over ]g], because when employing the antiparallel vector, gglobal — —bglobal, in the mask
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computation, one can still observe an exponential decay. This effect likely arises because,
as the separating plane is shifted further outward from the relevant region of the peaks,
cells from the distal tail of the local minimum are still clustered together. As a result, the
computed fractions continue to exhibit an apparent exponential decay, even though both
peaks lie on the same side of the boundary.

The situation can be better understood by examining Fig. [6.1] Here, if the antiparallel
vector between the local and global minimum is used for computing the tunneling fraction,
one can see that for increasing distances between the peaks, the area below the tail decreases
exponentially. From this it is apparent, that the computed masks are not necessarily con-
sistent with or indicative of the actual peaks, hence requiring a manual check in advance in
order to ensure meaningful results.

As manual checks aren’t feasible, a more sophisticated method is needed: instead of using
masks for splitting the surface into two areas representing the peaks, one employs a different
approach in which masks are used to determine the probabilities around the two peaks, which
are then in turn fitted to the expected ground state probabilities. The expected ground state
for one peak is given in Eq. of which the squared absolute value needs to be calculated
to retrieve the probability, which is then used to construct the fitting function for one peak

y(|¢l, Al e, fi) = A - sech® (- |¢ — fil), (6.1)

where {A, [, ¢, [i} are fitting parameters; the normalization constant is left arbitrary to ensure
another degree of freedom. As two peaks are to be expected, the fitting function will consist
of two of these ground state peaks combined in the following manner § = y(]&\, Al er, fin) +
y(|$ |, B, g, o, fiz) and fitted around an area around the peak centers, large enough to capture
the ground state. Yet it also needs to be sufficiently small: It is assumed that in the area
around the peak, the major contribution to the probability is from the ground state, and
that in areas farther away from the peak, the larger the share of excited states becomes.
The excited states are induced by thermal excitation, but as their energy increases, their
probability decreases.

The approach of the above paragraph builds upon an assumed similitarity of the one-
and two-dimensional cases when considering the excited states during the QPU run. Two
such one-dimensional excited states are depicted as an example in Fig. and taken from
[BP1§| for I = 3; It is presumed that the states of the one-dimensional show a similar nodal
structure to the two-dimensional system, resembling a cross-section through the space of
the two-dimensional probability density. In Fig. for the one-dimensional case, one can
see that the major contribution in the vicinity of the local and global minimum stems from
the ground state and that the excited states primarily add to the probabilities at the tails
of the distribution. With the two peaks fitted, the tunneling fraction can be computed by
taking the ratio between the summed probability of the probability distribution curve of the
global minimum and the overall probability of the two curves, as the fits, despite having been
performed on normalized data, might not be normalized themselves

T _ fyglob<$)d$ ) (6.2)

f[yloc(g) + yglob(&)]dgg
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Figure 6.2.: Probability density distributions of the first three (bound) eigenstates for the
potential 22V (z) = {(I 4 1) tanh?(z) with [ = 3.

Remark 8 The one-dimensional Hamiltonian of the potential 22V (z) = I(I + 1) tanh?(x)
can only have n = |l| bound states [BP18, [CGKNI16] with n € Ng. Asl=1/2 and g = 3/4
are given here, theoretically, only the ground state is expected to manifest as a bound state
(which is known from Eq. ) for each well, while the higher excited states manifest as
scattering states. Nevertheless, they might influence the experimental data distribution in
the same manner as the bound states through thermal effects, with the probabilities of the
scattering states dissipating away from the peaks, flattening them and spreading them out.

Additionally these states are examined for a singular potential well and it is not certain
that the solution for a double well potential is always merely a linear combination of these
states. For well-separated wells being far away from each other, this might hold, but the closer
they are together, the greater the deviation from this simplifying assumption becomes.

6.2. False Vacuum Decay

To probe the false vacuum decay behavior on the QPU, the insights from the previous sections
are combined here. For each run, the annealing schedule described in the previous section is
implemented, together with the coupled domain wall encoding, encoding of the potential of
Eq. for | =1/2 and g = 3/4, as well as the spin-reversal transformation of sec. to
mitigate the errors stemming from biases on the couplers as well as the h biases. For each
annealing process, a total of 32 x 32 = 1024 qubits is used, while each annealing run is split
into 6000 batches; 50 readouts are performed per batch.

The decay process is implemented for two scenarios. In the first scenario, the global mini-
mum is shifted away from the local minimum in a diagonal manner; in the second scenario,
the global minimum is shifted away in a spiral manner to probe the rotational symmetry
on the QPU. In both cases, the local minimum is located at the origin at (0,0) and the
distance between the two minima is increased in increments of A ~ 0.33. The positions of
the diagonally shifting global minimum b of the first scenario can be obtained from table

Executing the annealing procedures for the diagonal shift of the positions of the global
minimum yields, in total, seven final distributions from which the tunneling fractions are
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L b Jalifal m [B] g || @ |
(1.41,1.41) [[0.25 | 0.64 | 1.78 | (0.04, 0.05) | 0.16 | 0.76 | 2.01 | (1.25, 123)
(1.65,1.65) | 0.28 | 0.43 | 2.38 | (0.02, 0.02) | 0.10 | 0.79 | 1.92 | (1. )
(1.89, 1.89) || 0.30 | 0.34 | 2.90 | (0.00, 0.01) | 0.06 | 1.03 | 1.66 | (1. )
(2.12,2.12) | 027 | 0.35 | 2.65 | (0.00,0.00) | 0.04 | 2.90 |0.90 | (1.97, 1.97)
( ) (2. )
( ) ( )
( ( )

2.36, 2.36) || 0.33 | 0.46 | 2.33 | (-0.01, -0.01) | 0.02 | 92.61 | 0.16
2.59, 2.59) || 0.33 | 0.27 | 3.40 | (-0.02,-0.02) | 0.01 | 3.26 | 0.83
2.83,2.83) || 0.33 | 0.33 | 2.92 | (-0.01, -0.02) | 0.01 | 948.43 | 0.04

240 237
2.60, 2.58

Table 6.1.: Table of double peak fitting parameters, according to Eq. 1) for the tunneling
fraction simulation runs where the global minimum was shifted diagonally.

computed based on the fitting of a double peak, as described in the previous section. The
first four out of the seven encoded potentials are depicted in Fig. The final distributions
are obtained by dividing the number of occurrences of a state by the product of total num-
ber of occurrences and discretization area. The distributions corresponding to the encoded
potentials of Fig. can be found in Fig. The black outlines in the final distributions
indicate the masks which have been used for the fitting procedure. It is noticeable that for
small distances between local and global minimum, there is a greater decrease in the fraction
T between the peaks, while for greater distances, the peak at the global minimum decreases in
height while broadening. It is evident, that the peaks are not clearly separated and blend into
each other as a superposition, as illustrated for the one-dimensional case in Fig. Based
on these distributions, the double peak function g is fitted and the fits for the distributions of
Fig. are displayed in Fig. On the left, the observed final distribution is displayed in a
two-dimensional plot, on the right, the double peak fit of the observed distribution is shown,
and in the middle, the corresponding residuals A = Data — Fit are given. The associated
fitting parameters of § can be found in table From the figures, it is clearly visible that
the fitted surfaces match the observed distributions from the QPU quite well, especially when
comparing the magnitude of the residuals to the actual values at these positions.

However, it is also evident that, compared to the peaks in the fit, the observed peaks are
broader and show a higher degree of overlap. This slight divergence can be explained by the
nature of the fit, as it solely relies on the theoretical ground state of the modified Poschl-
Teller potential, while the excited states are not taken into account. But due to the fact that
the QPU is also susceptible to thermal effects, higher excited states may become prevalent
during the anneal, which leads to a deformation away from the expected ground state and to
more spread out peaks, as described in the previous section.

This absence of higher excited states in the fit might also explain the fine structures in the
residuals at the positions of the peaks, which seem to be of a systematic nature. Nevertheless,
the residuals indicate that the peaks are captured quite well even though the aforementioned
broadening can still be noticed as small systematic deviations from zero. The specific fitting
parameters can be found in table

Additionally, one can see in table that the fitted | and g values do not correspond
to the theoretical values of 1/2 and 3/4, which might again be explained by the absence of
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Figure 6.3.: The encoded potentials Eq. (5.1)) on the QPU using the coupled domain wall
encoding, for [ = 1/2, g = 3/4 and position b of the global minimum. 32 x 32 =

1024 qubits have been used for this.

thermal excited states in the fitting function but also, to a large extent, by the fact, that these
parameters show, to some degree, a correlation with the ¢; parameters, which also influence
the peak width. This correlation is especially apparent in the fifth and seventh row, in which
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Probability
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Probability
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(c) b=(1.89,1.89) |b] =2.68 (d) b= (2.36,2.36) |b| =3.34

Figure 6.4.: The final normalized probability densities over the space of possible field con-
figurations for the encoded potentials of Fig. measured on the QPU, at the
end of an anneal. These can be interpreted as the probabilities to encounter the
fictive particle at a given field configuration. The black outlines represent the
masks which are used for the fitting procedure. The simulations are run with
32 x 32 = 1024 qubits, 6000 batches and 50 reads per batch.
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middle.
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the g values are unusually large and the ¢y values unusually low. The probability distribution
as well as the fit corresponding to the fifth row in table can be found in Fig. and
, where, regardless of the aforementioned discrepancy, the fit matches the observed
distribution quite well.

Because the peak width is not only controlled by [ and g, but also by c¢;, it is hardly
possible to compare the | and g values with theoretical predictions, where ¢; is constant.
(Theoretically, the ¢; values should all be one, but in order to obtain an adequate fit, it is
beneficial to use the ¢; values as fitting parameters.) When one tries to modify the fit for
better comparability, one option is to bound the fitting parameters. One such example is
to set g < 4, which has the effect that the ¢y value becomes larger, yet does not result in
a significant difference from the unbound case. Nevertheless, because the tunneling fraction
did not change noticeably and only the qualitative behavior of the decay is of interest, the
parameters of the unbound case are used in this work. For future studies which may explore
not only qualitative, but also quantitative behavior, the bound case is indeed preferable.

Another observation is that the fitted positions of the minima g5 do not coincide precisely
with their theoretical positions. Though they are close, they deviate slightly and systemat-
ically toward the position of the local minimum. This deviation is likely an artifact of the
fitting procedure as, as previously stated, only ground state functions were used for fitting,
whereas the actual data originates from a mixed state distribution. As a result, the tail of
the local minimum peak appears more elevated than predicted by the ground state function,
which is evident in the residuals plot Fig. [6.5] The plot additionally shows an excess inten-
sity between the peaks compared to the outer tails. To compensate for this discrepancy and
minimize the residuals, during the fitting, the global minimum peak is shifted slightly toward
the more inert local minimum peak due to its larger aggregated probability mass. Note, that
for the encoding of a potential on the QPU, one needs to discretize the potential, thereby
potentially shifting the original position of the minima. As a result, the peaks might show a
slight offset along the line connecting the theoretical minima positions, which might explain
the small offsets for p;.

Computing the tunneling fractions based on these fits according to Eq. and plotting
them against the distance between the fitted peaks according to |fi; — fia|, yields Fig. @
The predicted exponential decay behavior of the square of the absolute value of Eq. @ is
evident. Performing an exponential fit of the form

Yep(C 1, B) = Ce™Pl 1 g, (6.3)

for the tunneling fractions, yields the red dashed line with the residuals given in the plot
below.

While, theoretically, the parameter 3 should be zero, it was nevertheless incorporated into
the fit, because during the annealing, the decay might not always reach zero due to a positive
offset on the probabilities over all possible states. This effect becomes more apparent for
lower spin values, as sy controls the kinetic term in the annealing Hamiltonian. The lower
Smin, the greater the kinetic term and thus the space that the fictive particle can explore. If
the kinetic energy of the particle passes the threshold at which the kinetic energy becomes
greater than the maximum value of the potential, it becomes a free particle unbounded by
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Figure 6.6.: Tunneling fractions according to Eq. for the fitted peaks are marked by
blue crosses. The exponential fit of the fractions is given by the red dashed line
with the according residuals plot in the graph below. The distances between the
peaks has been computed based on the fitted peak positions |fi; — fia].

the potential, having non-zero probabilities over the whole possible space. As a consequence,
the decay may not converge to zero asymptotically.

It is important to note that the tunneling probability for some given time T, in this case
~ 60us, is measured, instead of the decay probability per unit time. But due to their
proportionality (Eq. ) and, in particular, their sharing the same decay exponent, one
can also draw conclusions for the decay probability per unit time.

Comparing the fitted function with the numerical solutions of the decay exponent from
section is only possible for the « value of the fit, as the parameter C' not only incorporates
the constant offset of the decay exponent B, from the fit in Fig. but, in theory, also
the whole squared absolute of the prefactor from Eq. . Due to the complexity of the
prefactor and the rather secondary influence on the qualitative behavior of the decay, this was
not investigated further in this work, making it impossible to reliably estimate the constant
in the exponent in that manner. As the current objective is to draw qualitative conclusions
about the functional behavior, this is entirely sufficient.

Comparing the slope of the fit in Fig. with the o parameter from Eq. which was
used as the fit in Fig. it becomes evident that they do not coincide exactly. Instead, they
differ by a factor of approximately 1.7. Several reasons may contribute to this discrepancy:

Most importantly, the numerical results are based on the same theory from which Eq.
is derived. This theory assumes a one-way tunneling process without any tunneling-back.
This is contingent upon the value of the evolution time 7', which is itself depending on the
potential using the Euler-Lagrange equations , being equal to half of an oscillation
period (see remark . These equations depend on the value h2/2m, which is crucial to
estimate the actual evolution time of the system on the QPU. However, obtaining this value
is difficult. It can be estimated, for instance, by fitting the one-dimensional ground state

62



6.2. False Vacuum Decay

function of the harmonic oscillator [AS21], from which A?/2m can be obtained. By obtaining
h?/2m from the fitting, it may not remain constant across different annealing parameters
or system configurations, such as the sy, value. It is also doubtful whether this method
truly returns h?/2m, or whether it merely reflects a thermal distribution over the harmonic
potential. No conclusions can be drawn from the shape of the distribution, because, just like
the ground state distribution of the quantum harmonic oscillator, the thermal distribution
of the harmonic potential resembles a Gaussian distribution. Most likely, the result is a
mixture of both quantum and thermal effects, which poses considerable difficulties for the
fitting procedure.

Another issue arises from the way in which the potential of Eq. was directly encoded
in the annealing Hamiltonian. Here, the necessary prefactor h/2 was set to one, though
ideally it should have been replaced by the fitted value discussed in the previous paragraph.
The prefactor could have been absorbed into the constant ¢ of Eq. and carried into
Eq. ; however, this was not implemented, since the precise estimation of the prefactor
remains inaccessible. Without it, accurate quantitative results are difficult to obtain.

This prefactor /2 is also relevant for determining the correct spyi, value for the anneal.
Since smin defines the particle’s energy, which, within the theoretical model, is assumed
to be equal to the local minimum energy (or the ground state energy if one avoids the
classical regime approximation of section . Setting smin correctly is thus essential for
the annealing runs.

The fitting is critical because it determines the tunneling fraction per anneal run, and
ultimately the decay behavior for a shifting global minimum. The present challenge is that
the fitting is based on the assumption of a superposition of two ground state peaks. This may
be a good approximation for well-separated wells, but its results become less reliable if wells
are close together; in that case, the barrier height decreases, the potential wells deform, and
the corresponding ground states change. Moreover, the fitting neglects higher excited states
that could appear due to thermal excitations, which further weakens its accuracy. Since the
decay fit relies heavily on the preceding peak fit, even small errors in estimating the tunneling
fraction can significantly affect the slope of the exponential decay.

Lastly, a limitation arises from the theoretical assumptions about the potential. Even if
the decay probability per unit time were derived using bounce solutions (section , this
method would be based on an open potential, which is not the case here. The discretization
used during potential encoding introduces infinite boundary conditions, always bounding the
potential, regardless of its form. As a result, oscillations in the survival probability of the
metastable state naturally emerge (see remark . An open potential can only be assumed,
to some extent, if thermalization effects of the QPU are included, as discussed in remark

To probe the system’s rotational symmetry on the QPU, the above annealing runs were
repeated while shifting the global minimum in a spiral manner away from the local minimum.
The positions of the global minimum b can be found in the first column of table The rest
of the configurations and parameters were kept the same. As the results are quite similar
to Fig. [6.4] as was to be expected, only two of the seven resulting potentials and their final
distributions after the annealing process are presented in Fig. Performing the peak-fitting
procedure for all seven anneals results in the fitted parameters of table [6.2] Here, just as
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Figure 6.7.: The upper row depicts the encoded potential Eq. (5.1)) on the QPU, for | =
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1/2, ¢ = 3/4 and position b of the global minimum. The row below shows
the normalized probability densities over the discretized space of possible field
configurations measured on the QPU at the end of an anneal. These can be
interpreted as the probabilities of encountering the fictive particle for a given
field configuration. The black circles represent the masks which are used for the
fitting procedure. 32 x 32 = 1024 qubits, with 6000 batches and 50 reads per
batch are used for these simulations.



6.2. False Vacuum Decay

L b At fal @m [B] 8 [ @m |
(0.00, 2.00) [ 0.24 [ 1.22 [ 1.21 | (0.08,-0.03) | 0.18 | 0.64 | 221 | (-0.02, 1.77)
(1.45,1.82) | 0.30 [ 0.39 | 2.60 | (0.01,0.01) |0.10 | 0.63 |2.32| (1.29, 1.65)
(-0.59, 2.60) || 0.33 | 0.27 | 3.49 | (-0.04,0.02) | 0.08 | 0.70 | 2.15 | (-0.53, 2.41)
(-2.70, 1.30) | 0.32 | 0.40 | 2.61 | (-0.07,-0.02) | 0.05 | 2.13 | 1.07 | (-2.49, 1.15)
(-3.00, -1.45) || 0.32 | 0.40 | 2.62 | (-0.06, -0.04) | 0.04 | 1615.86 | 0.04 | (-2.80, -1.30)
(-0.82, -3.57) || 0.33 | 0.38 | 2.67 | (-0.04,-0.06) | 0.03 | 2533.90 | 0.03 | (-0.74, -3.35)
(2.49,-3.13) | 0.34 | 0.35 | 2.84 | (-0.02,-0.05) | 0.01 | 1.43 | 1.48 | (2.31, -2.95)

Table 6.2.: Table of double-peak fitting parameters, according to Eq. 1) for the tunneling
fraction simulation runs in which the global minimum was shifted outward in a
spiral manner around the local minimum .

in the preceding runs for the diagonal shifting of the global minimum, one can observe that
[ and g deviate from the theoretical values of 1/2 and 3/4. For some annealing runs, they
show only slight discrepancies, but because they are not consistently close for all runs, their
validity is questionable. As previously indicated, this might be explained by the correlation
with the ¢; values, as is evident from the fifth and sixth row of table [6.2] where the g values
are unusually high and the ¢y values unusually low.

The systemic offset in the fitted peak positions fi1 and jis can be observed once again and
can be attributed to the discretization of the potential for the QPU. The fitted double peaks
of the distributions in Fig. can be found in Fig. Computing the tunneling fractions
from these fits and plotting them again against the distance of the fitted peak positions yields
Fig. with the exponential fit represented by the red dashed line. The exponentially
decaying behavior is also evident. While the slope is closer to the numerical solutions of
section [5.2] it does not quite match it. This is likely for the same reasons that were discussed
in connection with the decay with a shifting of the global minimum in a diagonal manner.
Even though the decay curves resulting from the diagonal shifting are run on the same QPU
with the exact same parameters set for the annealing runs, they differ from the ones with
the spiral shifting. When comparing the absolute values of the tunneling fractions at each
distance for the diagonal and spiral shifting procedures respectively, one can notice that they
do not differ significantly and are rather close to one another for all distances. Notably, in
Fig. the first value is slightly larger and the second value slightly lower than in the
corresponding Fig. The rest of the values in Fig. seems to be slightly higher. The
derivative of an exponential function is, in turn, an exponential function, thus accounting
for the changing rate of the initial function at the input; therefore, the exponential function
is highly sensitive to its input and small differences from the QPU data in the tunneling
fractions result in a larger negative slope for the exponential decay in Fig. causing it to
converge faster.
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Figure 6.8.: Normalized probability densities of Fig. on the left, the respective fits accord-
ing to the double-peak fitting function § on the right, and their residuals in the
middle.

6.3. Quantum or Thermal?

This raises the question, whether the observed behavior is of quantum or thermal nature.
In [AS2]], in which thermal and quantum predictions were compared with the observed
behavior, it was already attempted to answer this question for the one-dimensional case. The
expected behavior from a quantum perspective in the semi-classical regime, in combination
with the Poschl-Teller potential, is an exponential decay depending on the distance between
the two minima (section. If using the thermodynamic approach instead, assuming mainly
thermal effects in an equilibrium and expecting the thermal energy to be high enough to
excite states over the barrier, one would anticipate a Boltzmann distribution, p; = e~ #i/(kT)
over all possible eigenstates as the final distribution, in which the eigenstate with the lowest
eigenenergy would have the highest occupancy. In this scenario, the distance between the
minima would not matter, as it does not influence the eigenenergies of the eigenstates of
the separate wells, and therefore one would expect to see a constant tunneling fraction,
independent of the distance.

When viewed in light of this, the results of section [6.2]indicate that the major contribution
likely stems from quantum mechanical principles, because out of the two, it is the only
model which also shows an exponential decay. Here, the emphasis is on likely as there are
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several limitations: Firstly, one expects a constant tunneling fraction only in the case of a
thermodynamic equilibrium, but when examining the final distributions of Fig. and its
corresponding potentials in Fig. this expectation might not hold, as, apparently, the
ground state of the global minimum, which has the lowest energy of all possible eigenstates
in this potential, does not have the highest occupancy, but rather the ground state of the
local minimum does. Accordingly, one needs to model this system using non-equilibrium
thermodynamics to gain a better understanding of what it would behave like in this limit,
which hasn’t been done yet. When considering that for the results of section [6.2) an overall
annealing time of 100us, which incorporated 60us of tunneling time, was used, this notion
appears to be reasonable. Although, according to [Amil5], annealing times of this order of
magnitude lie well within the quasistatic regime, that conclusion was drawn for a specific
problem instance; thus the regime boundaries may shift with larger qubit counts, and the
present case may thereby fall into the non-equilibrium regime. All in all, the only conclusion
that one can draw with certainty at the moment is, that the current system is not in a thermal
equilibrium and therefore not in the quasistatic regime.
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7. Discussion and outlook

In this work, the qualitative behavior of a false vacuum decay in two dimensions was inves-
tigated. For this purpose, the theoretical background was outlined and ways were presented
on how to simulate such a decay on a quantum annealer to test the theoretical predictions.
Different methods were analyzed on how to encode the problem on a quantum annealer and
from all the methods presented, the coupled domain wall emerged as the most promising
approach, as it uses the least amount of qubits while still preserving distance and rotational
symmetry, both of which are crucial for the simulation of the physical model on the QPU.
The simulations naturally raised the question of fidelty, that is to say, whether the system
"does what it should do’. Even though the coupled domain wall encoding without any en-
coded potential was used and a uniform distribution was to be expected, one obtained a
distribution which clearly showed a bias toward anti-ferromagnetic states. To counter this
problem, stemming from biases on the couplers between qubits, several approaches were in-
vestigated, such as shimming and a gauge transformation of the qubits. It was found that
gauge transformations produced the most promising results, which not only averaged out the
bias but also decreased its variance. Due to its simplicity and because there is no need for
extra iterations to retrieve a correction term, it provides a lightweight but effective technique
for error mitigation.

With this, one could study a false vacuum decay, in which two wells were given by the
modified Pbschl-Teller potential with one local and one global minimum. As predicted in the
semi-classical quantum field theoretic approach, a qualitative exponential decaying behavior
depending on the distance between the minima was observed. Whether this behavior is truly
of a quantum mechanical nature needs to be determined in future research by studying limit
cases, with, for instance, infinitely narrow wells. Other theories such as non-equilibrium
thermodynamics need to be explored on whether they produce results similar to the observed
behavior or if they can be excluded as an explanation. In this work it could be shown that the
system was not in a thermodynamic equilibrium. Nevertheless, a quantization of the decay
was not pursued, as the higher excited states for the two-dimensional modified P&schl-Teller
potential and key parameters such as i2/2m remain undetermined, and a detailed treatment
would have exceeded the framework of this thesis. The parameter h?/2m is also needed to
compute the sy, value controlling the energy of the fictive particle as introduced in section
Additionally, one is limited by real-world constraints; approximations were needed to
simulate the theory on the QPU such as the discretization of the problem, which introduced
infinite boundary conditions, as opposed to the open potential of the theory [Col77], in which
there is a single well with an energy level higher than that of the potential in the asymptotical
limit.

It would be of great interest for future research to investigate if other theories and models
might explain the exponentially decaying behavior equally well or better, to gain an improved
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understanding of the processes occurring on the QPU. For that purpose, it might be of interest
to perform Monte Carlo simulations to probe the non-equilibrium thermodynamic approach
or possibly model it using diffusion equations. These insights would enable quantitative
analysis of the problem that was investigated in this work. With the ability to change the
temperature on the DWave QPU, it would be of further interest to examine the convergence
behavior of the decay, which depends on the temperature. Lowering the temperature toward
zero would allow for the potential isolation of thermal effects. Furthermore, with the advent
of fast reverse annealing on the DWave QPU, it would be of interest to rerun the simulations
performed herein in the coherent regime [Amil5] to further minimize thermal influences on
the solutions.

One might also explore other types of QPUs which might be even more suitable to the
problem at hand. Though one would certainly have to redesign the way of encoding the prob-
lem onto the alternatively chosen machine, but the underlying theoretical model should not
change. As the given method in this work can be easily adjusted to encode higher-dimensional
potentials, it might also be of interest to extend the presently investigated two-dimensional
models to three- or higher-dimensional models. A notable application for the framework used
to simulate the false vacuum decay, might be to investigate the two-dimensional potential of
graphene and, from simulations, to determine the hopping terms of the electrons between the
atoms quantitatively. Other possible applications include measuring tunneling probabilities
of arbitrary potentials, as well as the computation of probabilities of electrons transitioning
between different energy levels within an atom, which represent local minima. All in all, the
considerations laid out in this thesis have shown how the simulation of false vacuum decay
on quantum computers opens a path into a fascinating field that continues to challenge our
understanding while offering remarkable opportunities for scientific discoveries.

70



A. Appendix

A.1. Mathematical techniques

For the thorough derivation of the false vacuum decay in the semi-classical regime of the path
integral formalism, it is necessary to use advanced mathematical techniques which are going
to be presented in the following subsections.

A.1.1. Wick-Rotation

A Wick-Rotation is a rotation of 90° in the complex plane. This is usually done in physics
by changing from real to complex time, which is done by setting ¢ — ¢7. This leads to a
change from the Minkowski Space to the Euclidean space, which can be seen by analyzing the
according metrics with respect to the ((9,@)2 operator in Eq. . The metrics are given by

g KOV = diag(—1,1,1,1), gridean = diag(1,1,1,1). (A1)

The operator in Minkowski space therefore yields

2 _ Minkowski _ 99\ A 9\’ d¢\>
(0u6)” = gl aucbam——(&) *(ag) +<8y> +<8z> (A.2)

whereas in the Euclidean space this would have yielded

2 _ _Euclidean o ad) 2 8¢ 2 8¢ 2 6¢ 2
(8u0)? = gEacidenng, 69, — <at) +<8$) +<ay) +<az> A

It is evident at once that if one uses complex time, the metrics transform into one another,

due to — (3¢/0t)? ‘= — (9¢/iot)* = (0¢/0t).

A.1.2. Saddle-Point approximation

Consider the integral

F(x) :/g(z)e)‘f(z)dz, (A.4)
g

where v is a contour in the complex plane and g(z) a smooth function. Such integrals are
not trivial to solve and often require advanced techniques. The saddlepoint approrimation
represents such a technique.
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Assuming v — oo, similar to the condition of the Laplace Method, in which for a function
h(z) = exp(—M f(x)) with f(z¢) being the minimum and M — oo, one can observe that the
ratio

h(@) _ M@ -@o) (A5)
h(zo)
is an exponential decay, which approaches zero for values far away from the minimum f(zo),
thus showing that, in this case, the minimum is the only dominating value if one were to
integrate the function.

Here, a similar case presents itself, as the dominating values of the integral are the sta-
tionary points of the function f(z) in Eq. ; or, to be more precise, the largest saddle
point, as saddle points are the only stationary points in the complex plane. This can be
deduced from the Cauchy-Riemann equations, which are, given a function ((z) = ((z +iy) =
u(x,y) +iv(z,y), with z = = + iy being a complex input and wu, v being real characterizing
the real and imaginary part of the function,

ou Ov ou Ov

— = — =——. A6
ox Oy’ Oy ox (A-6)
Using these equations, one obtains the Laplace equation for u
0%u 0%u
-z A.
Ox? oy? (A7)

and, by proceeding analogously, also for v. These are the conditions for saddle points; for
at a saddle point a function attains a minimum in one direction and a maximum in another
(i.e. complementary in x- and y-direction). These conditions hold for any given complex
differentiable (holomorphic) function ((z). The derivative in x and y for such a function is

given by the Wirtinger derivative
0 1/0 0
9: 3 <ax - ay> : (A.8)

Therefore, every stationary point in d((z)/0z = 0 is also a stationary point in u(x,y) and
v(z,y), and, given Eq. , a saddle point.

The approach is to deform the contour v in Eq. , which is valid due to Cauchy’s
integral theorem, in such a manner that one passes the saddle point so that the imaginary
part 3[f(z)] = const and the real part R[f(z)] are traversed in the steepest possible descent,
to achieve an effect similar to the Laplace method. The path of steepest descent for u(z,y)
is equivalent to following the path of constant v(x,y). This can be seen by analyzing the
steepest descent of u, which is given by

- ou Ou
n= == = . A.
=Y = (5 o) (A9)
Inserting this into the path of v with € — 0 yields
Ov v
v(x + nge,y + nye) = v(x,y) + [(%nx + ayny} €, (A.10)
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with n, and n, being the vector components of Eq. (A.9). Evaluating the bracket and with
the help of the Cauchy-Riemann equations, one obtains

ov ov ovou Ovou

Nyt —Ny = —— + —— A1l

8xn 8yny Oz Oz + oy dy ( )

_ovdn_ovon e

Ordy Oyox
=0, (A.13)
showing that v(x,y) stays constant.
Hence, the first step is to determine the saddle points of f(z). These are given by

or =0. (A.14)

0z|,_

20

If there are several saddle points, one needs to choose the one with the largest real value.
The contour is deformed to v — +/ so that it passes this saddle point. The next step is to
approximate the exponent at this saddle point; to this end a second-order Taylor expansion
is used

£(2) % f(z0) + 31" ()=~ 20)* + O(), (A.15)

which in turn is inserted into Eq. [A4]

F(x) = g(z0)e™ =) / e2/"(E)E=20)% gy (A.16)
,Y/
The exponent in the integral can be rewritten in terms of

z—z=re’  f"(z0) = |f"(20)]€", (A17)

with ¢ being the angle the contour passes through the saddle point, r the radius and 1 some
angle, thus yielding the following equation

F(x) =~ g(zo)e”(zo)ew/ o2 1/ (20)[e" 20002 g (A.18)
,y/
It is evident that the steepest descent is the one, where ¢(2¢t%) = —1_ which indicates that

2¢ + ¢ = m, thus providing the angle for the steepest descent through the saddle point
o= % The integral then results in

. 2T
~ )\f(Zo) “»b
F(z) =~ g(z0)e e NP7 (o)l (A.19)

where a Gaussian integral was performed.
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A.1.3. Functional Taylor-Expansion

When working with functionals (i.e. functions which map functions to functions) it is crucial
to proceed cautiously, as one cannot simply apply the regular approximation methods from
regular analysis; instead, one needs to modify the techniques. This is also the case for the
Taylor-Expansion. The difference results mostly from the way derivatives are performed for
functionals [GR96] ([GFG65])

OF [x(t)]

D Fle(®)] = | 5,y dr(t)dt, (A.20)

which influences the whole expansion. The classical multivariate Taylor Expansion (TE)

d r
F(w):F(a)‘i‘Z% Z _9F(=)
d=1 n

ny — Uny) " \bng = Ung /s A21
laxnl‘__axnd (x 1 a 1) (l' d a d) ( )

r=a

Ly Tig=
where x = (z5,, - ,%s,) and similarly a, can be used to derive the FTE in the form of a
Volterra series around a path x,(t). To do this, a Frechet-differentiable functional F[x(t)] is
taken and in the first steps approximated by a multivariate function F(xg,, -, zs,) : RN —
R, where N equidistant samples of the function are taken over the path z(t), denoted by
xs, = x(s4), instead of directly using the path function and considering the limit N — oo.
This can then in turn be represented by Eq. . One can map the classical derivatives
to functional derivatives by making a suitable choice for the directional function resulting in

OF@)| . - [ 2Ey)
Lo grogen F L2 (0)] R / L ox(t)

dt A.22
Oz, ’ ( )

z(t)=za(t)

where 1, ,,.,) is an indicator function restricting the integral on the interval of constant
Zs,. One can verify this intuitively by comparing the total differential of the multivariate
function

r=a

OF
dF = dxg, A2
Xij oy (A.23)
and Eq. (A.20) in the continuous limit
s OF [x(t)]
Diaa(e Fle®)] = lim > =5 I(t)_xs.dxsz-At, (A.24)

which need to be equivalent for N — co. Therefore one can match
OF[z(t)] oF
bl S22 — lim 7
o(t)=z,, D120 Atdzg,

5t (A.25)

which can then be used in Eq. (A.22)), with the help of the Riemann-sum, to establish the
equivalency in the continuous limit of N. With this one can insert Eq.(A.22)) into Eq. (A.21])
which, in turn, in the continuous limit N — oo, gives the functional Taylor expansion

B 1 OF[z]
Fla] = Flza(t)] + dZ; a / - / dx(to) - - - Oz(tq)

at the path z,(t) with dz;(t) = x;(t) — z4(t). For more details, see the derivation in [DTD23],
while [Ern94] gives a practical application of it.

&C(to) s 5ar(td)dt0 ce dtd, (A26)

T=xq(t)
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A.1.3.1. Second-order functional Taylor expansion around a minimum

The second-order FTE around a minimum is characterized by the fact, that the first-order
is zero at the minimum, effectively letting only the second-order contribute to the approxi-
mation. Taking a closer look at the action Eq. from section one can see that for
a first-order FTE, the integral is evaluated along the path which minimizes, in this specific
case, the action. For reasons of simplicity this procedure will be done only for the time di-
mension, but can be easily modified to higher dimensions (see sec. . For first-order
FTEs, the minimum of the action is given by the path

gi([ﬂ - /T:b dr' <Ccllf/dcj_, (r—=7")+V'(¢)d(r — T/)> (A.27)
= [866(r )] = )+ v (6(r) (A28
=0 (A.29)

where from the first to the second line, a partial integration on the first term was performed
and the relation
99(t)

do(t')
for functionals was used. This result can also be deduced from the Fuler-Lagrange equations
of classical mechanics, which provides the classical paths, ¢ (7), minimizing the action. In
common physical cases it is necessary that d¢ vanishes at the borders, as usually, paths
are only considered at fixed points a to b, resulting in the cancellation of the first term in

Eq. (A.28) when inserting in into Eq. (A.20). The second-order is given by

=§(t—t) (A.30)

825[¢] . 9? " n o al /
Inserting all of this into the second-order FTE one obtains
St~ Sloal + 5 [ [ 810100 — 700(r)66( arar (4.32)
= S[oa) + 5 [ 8"l6alb6(r)60(r)d (A:33)

where d¢(7) = ¢(7) — ¢pa(7) and the first-order is cancelled out as the expansion is done
around the classical path.

A.1.3.2. Functional Taylor expansion for multivariate input-functions

When working with higher-dimensional input functions like the four-dimensional QFT, one
needs to adjust the way of applying directional derivatives. Fortunately, this is only a matter
of notation. Given the function F[p(r)]

Flo(r)] = / F(p(r, p(r), T p(r))dr (A.34)

75



A. Appendix

where the bold symbols represent the vector notation r = (rg,--- ,ry) with N being the
number of independent variables, the derivative in the direction of dp(r) is given by

i Flotr)] = [ 25 oty (A.35)
[ (05l oslet
_ / ( Lo -V avp(r)>5p( Jdr + C, (A.36)

where 0/0Vp(r) is the derivative with respect to a vector and C' is a constant depending
on the boundary conditions (for more details, see chapter 7 in [GF65]). Also, as stated in
the aforementioned case, it is usually required in a physical context that dp(r) cancels at
the boundaries, thus, in turn, leading to the cancellation of the constant C'. This yields the
multidimensional Euler-Lagrange equations. By inserting these into the Taylor expansion
one obtains

Flp(r)] = Flpa(r)] +d§::1;! / / ap(if_[?FgE(T ") p(r):pa(r)ap(TO)"'5P(Td)d7'0"'drd'
(A.37)

A.2. Derivations

This subsection develops the derivations which the main work builds upon.

A.2.1. Action for a one-dimensional multi-field bounce

Given the FEuclidean action for a multi-field system

C/Q 2 C/2 1 8¢ 2
S— / ( ) V(6 :/ do () +V($) - E
c/2 (91‘ ( ) -C/2 2 8!13
which follows the energy conservation of Eq. (2.5) and with the integration constant which

equals the solution S[¢ o] of the constant path from Eq. (2.16)), one can rewrite the equation
by applying Young’s inequality which states

+E.C, (A.38)

PP —qpa
ab:min[)\a 42 b], (A.39)
A>0 p q
for a,b > 0. With this inequality, one can write the integrand as
A2 v n Vv
VV - K = mi K = K A4
VoK ng[ +2)\2} s [2 +2n] (A.40)

in which K is the kinetic and V' the potential term of the integrand, which should always
be > 0 as long as energy is conserved, with the reparameterization A> = 7 being used.
Determining the minimum by computing the derivation and setting it to zero yields

n:\/zzl = NWV.-K=K+V, (A.41)

76



A.2. Derivations

where, on the left side, the energy conservation was applied. Substituting all this back into

Eq. (A.38), one arrives at
s=/ﬁw¢§CZY¢W@—E¢3/m Cff¢ﬁmm—&L (A.42)

where the integration constant was neglected as it is not crucial for proceeding with the
current derivation. Defining the arc length, which returns the length of the path that has
already been traversed from x( to = as follows with its respective differential

o= [ (2 e

allows for the reparameterization of the action, given that an inversion z(s) exists, which
should be the case for |0¢/0z| # 0, in the following manner

5= / " 452V (@) — E. (A.44)
0

This yields the action in the line integral formulation, where one can see that [0¢/0s| = 1 as
the arc length definition was used to parametrize the path having the property

¢  dx ., (ds\T' ¢ d¢
s~ %% % \@) Tl T s
Remark 9 The derivation above only holds as long as a,b > 0, which is not always the case

for the potential or kinetic energy, as they can become zero, which makes the derivation only
valid within the limit.

=1. (A.45)

A.2.2. Poschl-Teller in 2D

Below are the first and second derivation of the family of ground states from Eq. (2.41) given
with the norm constant excluded for simplicity

Vo (|7]) = I tanh(c - |#])sech!(c - |f|)% (A.46)
- 2 2. |= Iy LT
Ap(|Z]) = —c*lsech®(c - |Z|)sech’(c - ]x\)mﬁ (A.4T)
— Pltanh(c- |Z]) (—ltanh(c- |Z|)sech!(c - \f])é,) % (A.48)
— Al tanh(c - |Z])sech!(c - |Z|) (2 - JE’2> (A.49)
|z '
tanh(c - |Z
=c? [lz tanh?(c - |#|) — Isech?(c - |#]) — lan|(f‘]a:|)] sech!(c - |Z]) (A.50)
T
tanh(c- |Z
=2 {—z (1 + 1) tanh®(c - |@]) — zW} sech!(c - |Z)), (A.51)
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where in the last step sech?(z) = 1 —tanh?(x) was used. Inserting them into Eq. (2.40) yields
Eq. (2.42).

A.2.3. Domain wall encoding into the J parameter

Starting with

N-1

V(po + &) (oi L — of), (A.52)
=1

l\D\»—\

it is noticeable that (o7, ; — 07)/2 is an element of the set {0,1} which is why the equality
(074 —07)/2 = [(07, — 07)/2]* holds. Inserting this into the above formula one obtains

N-1
1 V4 4
V(e(r)) = 1 Vi(go + Zf)(”iﬂ —0; )2 (A.53)
=1
L N
=1 V(po +1i€) (07110741 — 070741 — 074107 +0707) (A.54)
=1
L N
=3 Vi(go +i€)(0711071 — 0;0741), (A.55)
=1

where the relations o7 07,1 = 070 =1 and 07, 07 = 0707 were used. Extracting the J
parameters and by comparison with the quantum anneahng Hamiltonian, one obtains

1
Jij = 5 V(o +i€)(0ij — dij-1)- (A.56)

A.2.4. One-Hot encoding Hamiltonian transformation

To obtain the J-couplings and h-biases for the One-Hot encoding, it is necessary to rearrange
its Hamiltonian given in Eq. (3.24). This is done in the following up to the point, where the
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J and h parameters become apparent:

ARSI b N1 o?
Hop = A [Z 2@] —2[2 S| +1 (A.57)

N 1 N

=A 1-[21—05 + Y 1—0f—0i+oi0; (A.58)
% 0,7

=A 1—N—|———|—Za —&—f Z —o0; —o; +oio; (A.59)
C
N 1 Y

x A [1—2}205—#420505 (A.60)

[1 — ] Zo o Za (A.61)
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