001050746 001__ 1050746 001050746 005__ 20260116204419.0 001050746 037__ $$aFZJ-2026-00489 001050746 1001_ $$0P:(DE-Juel1)201441$$aLiu, Jialiang$$b0$$eCorresponding author$$ufzj 001050746 1112_ $$a76th Annual Meeting of the International Society of Electrochemistry$$cMainz$$d2025-09-07 - 2025-09-12$$wGermany 001050746 245__ $$aAdhesion force analysis on PEM water electrolysis materials 001050746 260__ $$c2025 001050746 3367_ $$033$$2EndNote$$aConference Paper 001050746 3367_ $$2BibTeX$$aINPROCEEDINGS 001050746 3367_ $$2DRIVER$$aconferenceObject 001050746 3367_ $$2ORCID$$aCONFERENCE_POSTER 001050746 3367_ $$2DataCite$$aOutput Types/Conference Poster 001050746 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1768547205_18170$$xOther 001050746 520__ $$aProton Exchange Membrane Water Electrolysis (PEMWE) presents a promising solution for the direct integration of hydrogen production with renewable solar or wind energy due to its rapid response performance [1]. However, at high current densities, the accumulation of gas products within the catalyst layer can obstruct the connection between water molecules and the catalyst in the Membrane Electrode Assembly (MEA). This phenomenon leads to an increase of overpotential, thereby reducing the overall efficiency of electrochemical performance [2].Investigating the effect of the surface structure and composition of the catalyst layer on gas bubble adsorption can help to better understand and to reduce this phenomenon. The adhesion force between the gas bubble and the electrode can be used as a benchmark to evaluate the ease of bubble detachment. Several previous studies have explored this topic in other research fields, for instance, Ren et al. demonstrate that a modification of nickel electrode surfaces with nanocone structures increases the surface roughness, thereby enhancing gas bubble detachment and improving efficiency in high-rate alkaline water splitting [3]. However, further in-depth investigation is still needed in the field of PEMWE.In this work, we present the results of adhesion force measurements performed on proton conductive membranes, catalyst electrodes and MEAs. Experiments were carried out with a tensiometer using water and oxygen as analytes. It was shown that parameters such as the membrane thickness, catalyst material, loading, structure and different treatment procedures of the analyzed sample can have a significant effect on the adhesion force.Funding: This work was financially supported by the Bundesministerium für Bildung und Forschung (BMBF): Wasserstoff - Leitprojekt H2Giga, Teilvorhaben DERIEL (project number 03HY122C), SEGIWA (project number 03HY121B).[1] Wang, Y., Pang, Y., Xu, H., Martinez, A. & Chen, K. S. Energy Environ. Sci. 2022, 15, 2288–2328.[2] Yuan, S. et al. Prog. Energy Combust. Sci. 2023, 96, 101075.[3] Q. Ren, L. Feng, C. Ye, X. Xue, D. Lin, S. Eisenberg, T. Kou, E. B. Duoss, C. Zhu and Y. Li, Adv. Energy Mater. 2023, 13, 2302073. 001050746 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0 001050746 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1 001050746 7001_ $$0P:(DE-Juel1)196067$$aFröhlich, Kristina$$b1 001050746 7001_ $$0P:(DE-Juel1)191359$$aKarl, André$$b2 001050746 7001_ $$0P:(DE-Juel1)161579$$aJodat, Eva$$b3 001050746 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b4$$ufzj 001050746 909CO $$ooai:juser.fz-juelich.de:1050746$$pVDB 001050746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201441$$aForschungszentrum Jülich$$b0$$kFZJ 001050746 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)201441$$aRWTH Aachen$$b0$$kRWTH 001050746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196067$$aForschungszentrum Jülich$$b1$$kFZJ 001050746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191359$$aForschungszentrum Jülich$$b2$$kFZJ 001050746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161579$$aForschungszentrum Jülich$$b3$$kFZJ 001050746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b4$$kFZJ 001050746 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b4$$kRWTH 001050746 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0 001050746 920__ $$lyes 001050746 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0 001050746 980__ $$aposter 001050746 980__ $$aVDB 001050746 980__ $$aI:(DE-Juel1)IET-1-20110218 001050746 980__ $$aUNRESTRICTED