001     1050746
005     20260116204419.0
037 _ _ |a FZJ-2026-00489
100 1 _ |a Liu, Jialiang
|0 P:(DE-Juel1)201441
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 76th Annual Meeting of the International Society of Electrochemistry
|c Mainz
|d 2025-09-07 - 2025-09-12
|w Germany
245 _ _ |a Adhesion force analysis on PEM water electrolysis materials
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1768547205_18170
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a Proton Exchange Membrane Water Electrolysis (PEMWE) presents a promising solution for the direct integration of hydrogen production with renewable solar or wind energy due to its rapid response performance [1]. However, at high current densities, the accumulation of gas products within the catalyst layer can obstruct the connection between water molecules and the catalyst in the Membrane Electrode Assembly (MEA). This phenomenon leads to an increase of overpotential, thereby reducing the overall efficiency of electrochemical performance [2].Investigating the effect of the surface structure and composition of the catalyst layer on gas bubble adsorption can help to better understand and to reduce this phenomenon. The adhesion force between the gas bubble and the electrode can be used as a benchmark to evaluate the ease of bubble detachment. Several previous studies have explored this topic in other research fields, for instance, Ren et al. demonstrate that a modification of nickel electrode surfaces with nanocone structures increases the surface roughness, thereby enhancing gas bubble detachment and improving efficiency in high-rate alkaline water splitting [3]. However, further in-depth investigation is still needed in the field of PEMWE.In this work, we present the results of adhesion force measurements performed on proton conductive membranes, catalyst electrodes and MEAs. Experiments were carried out with a tensiometer using water and oxygen as analytes. It was shown that parameters such as the membrane thickness, catalyst material, loading, structure and different treatment procedures of the analyzed sample can have a significant effect on the adhesion force.Funding: This work was financially supported by the Bundesministerium für Bildung und Forschung (BMBF): Wasserstoff - Leitprojekt H2Giga, Teilvorhaben DERIEL (project number 03HY122C), SEGIWA (project number 03HY121B).[1] Wang, Y., Pang, Y., Xu, H., Martinez, A. & Chen, K. S. Energy Environ. Sci. 2022, 15, 2288–2328.[2] Yuan, S. et al. Prog. Energy Combust. Sci. 2023, 96, 101075.[3] Q. Ren, L. Feng, C. Ye, X. Xue, D. Lin, S. Eisenberg, T. Kou, E. B. Duoss, C. Zhu and Y. Li, Adv. Energy Mater. 2023, 13, 2302073.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
536 _ _ |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
|0 G:(DE-Juel1)HITEC-20170406
|c HITEC-20170406
|x 1
700 1 _ |a Fröhlich, Kristina
|0 P:(DE-Juel1)196067
|b 1
700 1 _ |a Karl, André
|0 P:(DE-Juel1)191359
|b 2
700 1 _ |a Jodat, Eva
|0 P:(DE-Juel1)161579
|b 3
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 4
|u fzj
909 C O |o oai:juser.fz-juelich.de:1050746
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)201441
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)201441
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)196067
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)191359
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161579
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21