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& Lasse Klingbeil -3

Phenotypingis crucial for understanding crop trait variation and advancing research, but is currently
limited by expensive, labor-intensive monitoring. New phenotypic trait monitoring methods are being
proposed to reduce this so-called phenotyping bottleneck via automation. These methods are often
data-driven, requiring a dataset recorded with a specific sensor and corresponding reference values

for developing novel methods. To this end, we present the MuST-C (Multi-Sensor, multi-Temporal,
multiple Crops) dataset, which contains field data from various sensors collected over a growing season,
covering six crop species. All data was georeferenced for alignment across sensors and dates. To collect
our dataset, we deployed aerial and ground robotic platforms equipped with RGB cameras, LiDARs, and
multispectral cameras, aiming to capture a wide variety of modalities and observations from different
viewpoints. In addition to sensor data, we also provide manually collected leaf area index and biomass
reference measurements. Our dataset enables the development of novel automatic phenotypic trait
estimation methods, allows comparisons across different sensors, and generalizability across crop
species.

Background & Summary
Agricultural systems need to meet the demands of a growing population while coping with climate change'?.
. The efficiency of sustainable agricultural systems can be increased through research and development of crop
© varieties that can both provide high yields and cope with climate impacts**. Breeding such crop varieties and
© investigating innovative management methods requires assessing traits based on phenotypic measurements®.
However, phenotyping is a time-consuming and laborious task that is still often performed manually using
destructive measurements. The frequency of manual measurements is limited by labor costs, and the destructive
nature of these measurements further increases resource requirements, as substantial plant material and plot
area are needed. These limitations restrict the rate at which measurements can be generated, leading to slower
breeding decisions®.

Moving towards high-throughput phenotyping of plants by automation® is, therefore, a key stepping stone
towards high temporal frequency, repeatability, and objectiveness of measurements for phenotypic trial experi-
ments. The development of innovative high-throughput phenotyping methods using mobile sensing is enabled
by the availability of domain-specific data under real-world conditions. While some real-world agricultural field
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Fig. 1 Overview of our dataset, comprising a field trial with multiple crops, with sensor data collected at several
time points. We collected data using multiple sensors; here, we showcase our georeferenced data, showing the
same location in a sugar beet plot across multiple sensors in the middle section. From top left, we show the

data from RGB orthophotos, multispectral orthophotos, four of the 20 RGB instantaneously captured images,

a colored dense point cloud from RGB structure-from-motion, and the high-resolution LiDAR point cloud
(highlighted in red, we showcase the detailed point cloud of a single plant). With our georeferenced data, we
can align data from different sensors and dates. In addition, we provide destructive reference measurements for
aboveground fresh weight and LAI for the field trials.

datasets are available!®12, these datasets often only represent a single growth stage, crop, or sensor type and are
not developed for reusability. Thus, currently, we cannot directly compare different approaches that use differ-
ent sensor modalities, study the effects of various growth stages on the performance of developed methods, or
investigate the capabilities of developed approaches on multiple crops or sensors.

We fill this gap by providing a multi-sensor, multi-temporal, multi-crop (MuST-C) dataset (c.f. Fig. 1) to sup-
port research in high-throughput phenotyping by accelerating the development of algorithmic approaches for
phenotypic trait estimation. To this end, we performed measurements using different sensing modalities, includ-
ing RGB cameras, multispectral cameras, and range measurements from light detection and ranging (LiDAR)
sensors, over multiple growth stages on a field trial with multiple crops. We mounted the sensors on robotic
platforms, i.e., unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs), equipped with global
navigation satellite system (GNSS) receivers for georeferencing, which enabled us to provide the data in the
same reference frame such that all data is aligned across sensors and over time. To evaluate newly developed
approaches, we provide reference data acquired with conventional measurements of plant traits, specifically, the
biomass and the leaf area index (LAI). We measured the LAI using a hand-held commercial canopy analyzer
(i.e., SunScan canopy analysis system), and validated the measurements with destructive measurements using
the WinDIAS leaf area meter.

In addition to LAI"*'* and biomass estimation'®, our MuST-C dataset is useful for addressing other tasks,
such as crop-weed segmentation’®, plant counting'®'’, leaf counting'®!®, vegetation index retrieval, plant
height?, and leaf angle distribution’. Furthermore, additional tasks that our dataset supports include plant
reconstruction?’, plant density estimation?, vegetation segmentation**?*, or radiation use efficiency estimation”.
In line with growing interest in foundation models*2%, our data can be used for self-supervised pretraining
foundation models for agricultural applications, such as weed semantic segmentation®, disease detection®, or 3D
reconstruction'?. Our dataset provides the novelty of aligned data from multiple sensors, possibly for compar-
ison and development of novel methods from different sensor modalities, including sensor fusion approaches.

Methods

Experimental Design. Figure 2 shows an orthophoto of the field trial, located at the Campus Klein-
Altendorf research facility, University of Bonn, Germany (50°37 North, 6°59 East). The study site soil was classi-
fied as Haplic Luvisol, with a loamy siltic texture, and had high nitrogen levels (100 kg total available Nitrogen per
hectare) in the plow layer, which decreased in the subsoil. The crops were cultivated in rectangular plots of 7.5 m
by 6 m. The field experiment spanned one growing season in the spring of 2023; Table 1 shows the sowing and
harvest dates for each crop. We report weather data collected from a Campbell Scientific environmental station
equipped with a CS310 quantum sensor, a ClimaVUES50 weather sensor, and a CS655 soil moisture sensor
(Campbell Scientific, Logan, UT, USA).

Our multi-crop field trial consists of six sub-experiments, comprising five monocultures: (i) sugar beet (Beta
vulgaris L.), (ii) spring wheat (Triticum aestivum L.), (iii) sweet corn (Zea mays L.), (iv) soybean (Glycine max
L.), and (v) potato (Solanum tuberosum L.), as well as a wheat-faba bean (Vicia faba L.) intercrop experiment,
i.e., where wheat and faba bean crops are sown in the same plot.

In the sugar beet experiment, we tested different herbicide concentrations applied on the variety BTS 440:
(i) 0% (no herbicide), (ii) 50%, (iii) 75%, and (iv) 100% of the amount used following standard agricultural
practice of herbicide application. Sugar beet plants were sown on different dates for each column of plots to
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Fig. 2 Orthophoto of the field trial area (top) and field trial layout (bottom). In the orthophoto, we denote the
area of each species with white dashed lines. We designated an area for destructive measurements, shown here
in light blue. In the field layout, we show the plot ID (bottom) and crop genotype (top) for each plot. We color-

coded the plots based on the crops with sugar beets in green, wheat in red, maize in orange, soybean in pink,

potato in brown, and intercrops in blue. For sugar beet plots, we mark the herbicide levels. For the wheat plots,
we mark the seed density in seeds per square meter.
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Species Sowing Date (week #) | Harvest Date (week #)
Sugar beet 05.05.2023 (18) N.A.

Wheat 25.04.2023 (17) 23.08.2023 (34)

Maize 18.05.2023 (20) 16.10.2023 (42)
Soybean 05.05.2023 (18) 11.10.2023 (41)

Potato 19.05.2023 (20) 27.09.2023 (39)
Wheat and faba 02.05.2023 - 22.08.2023 -

bean intercrop 03.05.2023 (18) 22.08.2023 (34)

Table 1. Sowing dates and harvest dates of each species. We harvested the sugar beets at a later date after the
duration of this dataset’s development.

study the earlier stages of development. In the wheat experiment, we tested the wheat of the Granus variety
with four sowing densities: (i) 150 seeds m™, (ii) 250 seeds m~2, (iii) 350 seeds m~2, and (iv) 450 seeds m~2. The
experiment followed a randomized complete block design with four replicates (n = 4) allocated to the plots. In
the sweet corn experiment, we tested four varieties (Khan, Popcorn Robust, Mirza, and Caramelo), while in the
soybean experiment, we tested two varieties (Eiko and Minngold). Both experiments followed a randomized
complete block design with the replication n = 4 allocated to the plots. We planted two varieties of potatoes
(Belana and Gala) using a two-block design. We managed the five monoculture trials conventionally, following
standard agricultural practice in the region. In the wheat-faba bean trial, we compared organically grown inter-
crops with their respective monocultures as controls. The monocropped wheat was sown at 320 seeds m~2 and
monocropped faba bean were sown at 36 seeds m~2. The intercrops were established as a 1:1 cereal-legume mix-
ture using half of the monocrop sowing density per crop. We tested two mixtures: (i) Fanfare (faba bean) with
short-growing Anabel (spring wheat) and (ii) Fanfare with tall-growing Sorbas (summer wheat). No fertilizers
or herbicides were applied in this trial to mimic organic farming practices. The experiment was arranged in a
two-block design: one block contained the mixture treatments (each with two replicates), while the second block
was assigned to the mono-crop treatments (two replicates for faba bean and no replication for spring wheat).

UAV and UGV Data Acquisition and Processing. We collected data from the aforementioned field
experiment using different sensor modalities equipped on three different UAVs (UAV1, UAV2, and UAV3)
and a UGV. Table 2 shows a complete summary of our data products, Table 3 shows the platforms used in our
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Sensor Data Package Sensor Name Sensor Manufacturer Products Resolution
RGB Camera (high resolution) | UAV1-RGB PhaseOne iXM-100 RGB camera | PhaseOne, Copenhagen, Denmark Images, orthophotos, 11_6645>< 87592
point clouds px; 10° pts m
LiDAR UAV2-LIDAR RIEGL miniVUX-SYS RIEGL Laser Measurement Systems | o+ (1ouds 10° pts m 2
GmbH, Horn, Austria
RGB UAV2-RGB Sony 7R Sony, Tokyo, Japan images, orthophotos }1”7(320 * 6046
. RedEdge-MX Dual Camera AgEagle Sensor Systems Inc., Wichita, | .
Multispectral UAV3-MS System KS, USA images, orthophotos 1280 x 960 px
RGB UAV3-RGB Sony & 7R Sony, Tokyo, Japan images, orthophotos | 6240 x 4160 px
RGB (20 cameras) UGV-RGB Nikon Z7 (20 cameras) Nikon Corporation, Tokyo, Japan images 8256 x 5504 px
Laser Triangulation Scanner | UGV-LMI LMI Goca'tor 2490 laser LMI Technologies, Burnaby, Canada | point clouds 10° pts m~2
triangulation scanners
LiDAR UGV-Ouster Ouster OS1 Quster, Inc., San Francisco, CA, USA point clouds 10* pts m2
Non-destructive LAT md_SunScan SunScan Plant canopy analyzer | Delta-T Devices Ltd., Cambridge, UK | LAI N/A
Destructive LAI md_Destructive_LAI ‘S/ggtle]illAS Leaf Image Analysis Delta-T Devices Ltd., Cambridge, UK | LAI N/A
Biomass md_Biomass N/A N/A Abf)veground fresh N/A
weight

Table 2. The data types in our dataset. We collected five modalities with robotic platforms and manually
collected LAI and biomass reference measurements. We collected all the data in the same field trial. We report
the image resolution for RGB and multispectral sensors and report the approximate points per square meter for
the point clouds provided.

Platform UAV1 UAV2 UAV3 UGv
Name DJI Matrice 300 RTK DJI Matrice 600 PRO (M600) | DJI Matrice 600 PRO (M600) | ‘orvald Il + custom
(M300) aluminum housing
Manufacturer SZ DJI Technology Co., SZ DJI Technology Co., Ltd., SZ DJI Technology Co., Ltd., Saga Robotics, Oslo,
Ltd., Shenzhen, China Shenzhen, China Shenzhen, China Norway
a RTK (built-in) + Applanix APX- ac multi-GNSS and SBG
GNSS RTK (built-in) 20IMU + Applanix AV14 GNss | RTK (built-in) Ellipse D IMU
Altitude 21 m 30m 25m N/A
lawnmower pattern . .
Flight plan (perpendicular to the field (cir'oss-ﬂlght pattern (15 m side l;wgm?wer.pattem (parallel to N/A
plots) istance) the Sun’s trajectory)

Table 3. UAVs and UGV used for data collection. Further details about the UGV can be found in our prior
publication®!.

UAV3-MS + UAV2-Lidar +

Week # UAV1-RGB UAV3-RGB UAV2-RGB UGV-LMI UGV-Ouster UGV-RGB md_SunScan md_Destructive md_Biomass
20 He A§OX Mo A§OX §
21 Mo A§OX He A§OX WeA§OX We A§OX We A§OX . . .
22 WeA§OX HeA§OX WeA§OX WeA§OX Mo A§x ox mx mx
23 He A§OX WeA§OX
24 He A§OX He A§OX WMo A§OX HeA§OX He A§OX We A§x [ ] [N
25 He A§OX He A§OX He A§OX HeA§OX He A§x He A§x HeAX He A§x
26 He A§OX He A§OX He A§x HeA§x
27 He A§OX He A§OX Mo A§OX A§OX HeA§x He A He A§x
28 He A§OX He A§OX He A§OX We§OX He A§O
29 Mo A§OX WMo A§OX Mo A§x mA§X mA§X
30 Mo A§OX We§OX He
31 He A§OX
32 Mo A§OX He A§OX WeA§OX We§OX He WMo A§x § A§
33
34 He A§OX He A§OX We§OX He mA$O
35 HeA§OX
36 HeA§OX

Table 4. Calendar weeks where we collected data for each data package and crop species. Legend: M: Sugar Beet,
o: Wheat, A: Maize, $: Soybean, ©: Potato, x: Intercrop.

measurement campaign, and Table 4 shows the weeks and crops for each data package. In the following, we
describe the different sensors and the collected data.
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Fig. 3 From the top left, the UAV setup consisting of the M300 with the PhaseOne camera (highlighted in red),
which captured high-resolution images; the images have a large field of view, yet the small details are also visible
(in blue). We performed structure from motion using these high-resolution RGB images and obtained a dense
point cloud and an orthophoto.

UAV1 High-Resolution RGB Images (UAV1-RGB).  Figure 3 shows the UAV setup and products for UAV1-RGB.
We collected high-resolution RGB images (11664 x 8750 pixels) in nadir view, i.e., where the camera points
directly below, perpendicular to the ground. The captured images had a 70% overlap on the sides and a 74%
overlap frontally. We flew UAV1 at an altitude of 21m, to obtain images with a ground sampling distance of
approximately 1 mm. Using the Agisoft Metashape Pro software package, we performed structure from motion
via bundle adjustment initialized with RTK poses, aligned using ground control points (GCPs), and obtained a
photogrammetric point cloud and an orthophoto for each collection date.

UAV2 LiDAR Point Clouds (UAV2-Lidar). Figure 4 shows the UAV setup and products for UAV2-Lidar. We
outfitted the UAV2 with a RIEGL miniVUX-SYS consisting of the RIEGL miniVUX-2UAV 2D laser scanner
and the Applanix APX-20 inertial measurement unit (Imm) (Applanix, Richmond Hill, Ontario, Canada). We
configured the LiDAR sensor to the laser pulse repetition rate of 200 kHz and the scan speed of 53.80 lines per
second. For georeferencing, we used a reference station to estimate the GNSS baseline and performed pose
estimation using the Applanix POSPac software with the IMU and additional GNSS data. We used the soft-
ware RIEGL RiPROCESS for direct georeferencing, which combined the trajectory and LiDAR data, with strip
adjustment correction to improve the trajectory by using multiple flight strips. We filtered the LiDAR data by
the maximum range of 45 m, and the resulting georeferenced point cloud has a mean density of 1433 pts m~2

UAV2 RGB Images (UAV2-RGB). In addition to the LIDAR data, we used the same UAV2 to simultaneously
capture RGB data at 1.5 s intervals. We processed the images using the Agisoft Metashape Pro to obtain the
orthophoto of the field for each date, an example of which is shown in Fig. 4. The orthophotos have a ground
sampling distance of approximately 1 cm.

UAV3 Multispectral Images (UAV3-MS). We collected multispectral images using UAV3, mounted with the
multispectral cameras with 10 bands, detailed in Table 5. The cameras point directly below, perpendicular to
the ground, using the Ronin MX gimbal (SZ DJI Technology Co., Ltd., Shenzhen, China) to acquire images of
the entire field trial with a ground sampling distance of 3 cm. Figure 5 shows the UAV setup and products for
UAV3-MS. The UAV followed a lawnmower pattern, with an overlap of 90 % along the flight path and 65 % on the
sides. To ensure valid orthophotos, we planned the flight campaigns on days with stable illumination conditions.

We calibrated each orthophoto’s reflectance with nine calibration panels with near-Lambertian surfaces and
contrasting reflectance factors ranging from black to white, placed on the ground before each flight. Each panel
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Fig. 4 From top left, the UAV setup of the UAV2 with the RIEGL LiDAR (highlighted in red) and Sony RGB
camera (highlighted in blue). We processed the data to obtain point clouds and orthophotos of the field.

has precisely defined, measurable reflectance values ranging from 2% to 63% reflectance. We placed the nine
panels with some distance apart to avoid adjacency effects of the panels (neighboring panels contaminating
each other’s reflectance). We put them on the bare soil to prevent the influence of the vegetation. We processed
the raw multispectral images to radiance units*® and georeferenced them using ground control points using the
Agisoft Metashape Pro software package to obtain the camera extrinsic calibration and multispectral orthopho-
tos with the same resolution as the raw images. For accurate georeferencing, we recalibrated the camera poses
using GCPs evenly distributed in the field trial. The exact location of each GCP was measured using the GNSS
Receiver HiPer VR (Topcon Positioning Systems, Inc., Tokyo, Japan), with a relative base error of 5 mm hori-
zontally and 10 mm vertically; and additional distance-dependent error of 0.5 parts per million horizontally and
0.8 parts per million vertically. We calibrated the multispectral reflectance orthophotos using the empirical line
method*. In summary, UAV3-MS contains the multispectral images, camera calibrations, and multispectral
reflectance orthophotos of the entire field for each collection date.

UAV3 RGB Images (UAV3-RGB). In addition to the multispectral data of UAV3-MS, we also recorded RGB
data during each UAV3 flight. We mounted an RGB camera on the same gimbal as the RedEdge and captured
RGB images in sync with the multispectral images. From these RGB images, we obtained digital elevation mod-
els (DEMs) and orthophotos using the Agisoft Metashape Pro. The orthophotos have a ground sampling dis-
tance of approximately 3 cm, with an estimated overlap of approximately 80 % along the flight path and 75 % to
the sides. In summary, UAV3-RGB contains the RGB images, RGB camera calibrations, RGB orthophotos, and
DEMs for each collection date (Fig. 5).

UGV RGB Multi-Cameras (UGV-RGB). Our UGV was equipped with 20 RGB cameras to capture images
instantaneously, at the resolution of 45.7MP (8256 x 5504 pixels). We strategically positioned the cameras along
the interior surfaces of the UGV and adjusted their zoom levels to capture a larger crop area. A translucent plas-
tic sheet was attached to the sides of the UGV to minimize motion artifacts by shielding the plants from wind
and reducing harsh shadows caused by bright sunlight. The UGV followed the path along the area of destructive
sampling shown in Fig. 2, and captured images of the field trial. We collected the multi-camera data at the lower
growth stages and stopped when the canopy was too tall or crowded. For each day, we manually calibrated each
camera’s zoom level based on the crop canopy height. Esser et al.’! described the sensor setup in more detail.
We sorted the sets of images based on the field plots. We calibrated the camera intrinsic and scaled extrinsics
of each day using the Agisoft Metashape Pro. In summary, the UGV-RGB data package contains the sets of
instantaneously captured 20 RGB images organized by plots and camera calibrations for each collection date.
Figure 6 shows the UGV and cameras, and an example set of 20 instantaneously captured images, which we used
to generate a mesh.

UGV LiDAR Point Clouds (UGV-LMI and UGV-Ouster). We mounted two LMI laser triangulation scanners
and an Ouster OS1 64-beam LiDAR on our UGV. The two triangulation scanners, mounted on the left and right
sides of the UGV, had an overlapping field of view, and the multi-beam Ouster LiDAR at the front of the UGV
was angled downward. We drove the UGV across all the plots in the field trial along the area of destructive sam-
pling shown in Fig. 2.
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Orthophoto Band | Name Center Wavelength (nm) | Bandwidth (nm)
01 Costal blue 444 28
02 Blue 475 32
03 Green 1 531 14
04 Green 2 560 27
05 Red 1 650 16
06 Red 2 668 14
07 Red Edge 1 705 10
08 Red Edge 2 717 12
09 Red Edge 3 740 18
10 Near-infrared (NIR) | 842 57

Table 5. Multispectral bands of the RedEdge-MX Dual Camera System used for UAV3-MS and their
corresponding bands in our reflectance orthophotos.

Fig. 5 From top left, the UAV3 used to carry multispectral RedEdge cameras (in red box), which captured
multispectral images (top middle). We processed the multispectral images to obtain orthophotos of the field
trial with 10 reflectance channels. The same UAV also carried an RGB camera (highlighted in light blue), which
captured RGB images during the same flight. We performed structure from motion with these RGB images to
obtain an RGB orthophoto for each collection date.

For georeferencing, we interpolated the trajectory with respect to the laser data and transformed each laser
profile from the scanners into a global coordinate frame (UTM, WGS84). We performed the system calibration
(i.e., the estimated transformation between the scanners and the inertial navigation system’s frame) using a 3D
point feature approach®. With the calibrations, for each LIDAR (left LMI, right LMI, and Ouster), the sequences
of point clouds were respectively merged into a single large point cloud, which was then cropped and organized
by plot.

Each 3D point in the point clouds contains time (UTC) and laser intensity ranging from 0 to 255. The point
clouds from the left and right LMI scanners were not aligned to each other in the raw point clouds, and some mis-
alignment between the two sensors may occur due to deformation (<10 cm) of the UGV when traversing uneven
or soft ground. Therefore, we performed post-processing to merge the point clouds from the left and right LMIs
using a custom plane-to-plane iterative closest point algorithm to obtain the final merged point clouds.

Figure 7 shows the UGV setup and laser sensors used, as well as an example of an LMI point cloud (left and
right scanner combined) for a soybean plot, and an example of the Ouster point cloud for a soybean plot; notice
that the LMI point cloud has a higher density compared to the Ouster, where single plant organs are distinguish-
able with more detail. In short, UGV-LMI and UGV-Ouster respectively comprise one cropped point cloud for
each plot and collection date.

SunScan LAI Data Acquisition and Processing.  We took non-destructive LAl measurements with the
SunScan Canopy Analysis System on the dates indicated in Table 4. All measurements were taken during midday
(approximately between 12:00 and 15:30 local time), under mostly sunny conditions, and were repeated 10 times
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Fig. 6 This figure shows the UGV (left) with the mounted cameras (one highlighted in red). There are 20
cameras mounted in the UGV, simultaneously capturing 20 images (middle). We used these images to perform
structure from motion and obtained a 3D representation of the captured area (right).

for the plots of sugar beet, wheat, maize, soybean, and wheat-faba bean intercrop trials of plots given in Table 6.
The SunScan system consisted of an incoming light sensor and a probe. The incoming light sensor measured
both direct and diffuse incoming radiation above the canopy and was placed on a tripod near the measurement
area. The probe had 64 photosynthetically active radiation (PAR) sensors. We placed the probe diagonally below
the canopy and spanning across multiple crop rows, in the center of the plot, to measure the under-canopy PAR.
From the incoming light sensor and probe measurements, we calculated the LAI with the SunScan proprietary
software, where we set the estimated leaf angle distribution parameter (ELADP) based on the crop species, as
shown in Table 6. Figure 8 shows the plots of the LAI of each crop species over time.

Destructive Biomass and LAl Data Acquisition and Processing. We measured the aboveground
fresh weight of plants sampled destructively from the field trial from the designated area shown in Fig. 2, on dates
indicated in Table 4, for selected plots listed in Table 6. We harvested the length of I, of r, € {4, 5} rows of wheat
and intercrops, respectively, and an area of approximately 1 m? for all other crops to obtain N; plant individuals.
We weighed each sugar beet and maize plant individually to record the biomass per plant. We avoided harvesting
plants around the plot edges to minimize edge effects, and weighed the plants immediately after harvesting to
obtain the biomass measurement m. Finally, we calculated the fresh weight of the aboveground biomass per meter
Mo (in g/m~2) of the plot with:

T,
—m, for crop € {wheat, intercrop}
rS s

crop = N >
me, for crop € {sugar beet, maize, soybean}

s 1

where r,, is the number of rows per meter of the plot, and N,, is the average number of plants per meter of the plot.

In addition, we measured the destructive leaf area using the WinDIAS 3 image analysis system leaf scanner.
These destructively obtained LAI measurements were used to validate the SunScan LAI measurements (see
Technical Validation section). On dates indicated in Table 4 and for selected plots listed in Table 6, after meas-
uring the biomass of the harvested samples, we separated a subsample of the plants to scan for leaf area. From
these plants, we detached all leaves from the stems and scanned each leaf using the WinDIAS 3 leaf scanner,
with an overhead camera that takes images at 4 Hz to obtain total leaf area A. We scanned each sugar beet and
maize plant individually to record the leaf area per plant. We scaled the total leaf area A to estimate the LAI of the
plot, where LAI is the unitless ratio of measured green leaf area in square meters to one square meter of ground
surface® (m? m—2) with:

m

T,
m g for crop € {wheat, intercrop}
LAI rSlS mW
crop — N >
—A, for crop € {sugar beet, maize, soybean}
N, @

where m,, is the biomass of the plants subsampled and scanned for LAL [ is the length of the rows harvested in
meters. The destructive leaf area measurements have an accuracy of +4%, as reported by the WinDIAS man-
ufacturer, but due to the scaling in Eq. (2), the calculated LAI is expected to have a poorer accuracy. Figure 9
shows example graphical plots of the destructively measured biomass and LAIL

Data Records

The MuST-C dataset is available via our project webpage https://www.ipb.uni-bonn.de/data/MuST-C/or directly
via the bonndata public access repository https://doi.org/10.60507/FK2/OX9XTM?*. Figure 10 illustrates the
directory tree structure of our data records. We provide our data in two formats to support different use cases.
Firstly, we organized the data into four directories according to their data types: (i) images, (ii) point clouds, (iii)
raster data, and (iv) reference measurements and metadata. Secondly, for users interested in plot-level data, we

SCIENTIFICDATA|  (2026) 13:17 | https://doi.org/10.1038/541597-025-06462-y 8


https://doi.org/10.1038/s41597-025-06462-y
https://www.ipb.uni-bonn.de/data/MuST-C/
https://doi.org/10.60507/FK2/OX9XTM

www.nature.com/scientificdata/

222.2

Height (m)

Intensity

Fig.7 From top right, the UGV equipped with the Ouster LiDAR (highlighted in light blue), which we used

to obtain a point cloud (top right). We also mounted the UGV with two LMI scanners, on the left and right
(bottom left); the left LMI is highlighted in blue and the right LMI in orange. We mounted the two LMIs to have
an overlapping field of view over the crop plants. We processed the LMI outputs to obtain a georeferenced dense
point cloud (bottom middle). The point clouds have a high resolution, and individual plant organs are visible
(bottom right, soy bean leaves manually cropped out).

Species SunScan plotIDs | ELADP | Destructive LAI plot IDs | Biomass plot IDs
Sugar beet | 178,179, 198, 199 1.55 178,198 178,198
Wheat 174-177 0.96 174,176 174,176
Maize 170-173,190 - 193 | 1.37 191,192 191, 192,172,173
Soybean 168, 169, 188, 189 4.1 168, 169, 188, 189 168, 169, 188, 189
Intercrop | 162, 163, 182,183 0.96 162, 163, 182, 183 162,163, 182, 183

Table 6. The plot IDs where we took SunScan measurements, the ELADP used to calculate LAI for SunScan,
plot IDs where we took destructive LAl measurements, and plot IDs where we took destructive biomass
measurements.

provide our data organized by plot in the “plot-wise” directory. Note that the information in both structures is
duplicated; the users are free to choose the organization structure that best suits their use case.

The images directory consists of RGB and multispectral image files from UAV1-RGB, UAV2-RGB, UAV3-RGB,
UAV3-MS, and UGV-RGB, with a child directory for each data package and a child directory for each date. For
UGV-RGB, we organized the data into directories based on plots, and we sorted each set of 20 images into a directory,
with each image filename following the nomenclature “nikon_ <camera ID>.jpeg”. For the multispectral images of
UAV3-MS, image filenames follow the nomenclature “IMG_ <image ID >_<band ID >.tif”, following band IDs in
Table 5. All camera calibrations were provided in the same directory as the images, in two alternative plain text for-
mats, “cam_params.txt” and “‘cam_params.xml”

The point clouds directory includes the LiDAR data (UAV2-Lidar, UGV-LMI, and UGV-Ouster) and the
structure-from-motion dense point cloud of RGB images (UAV1-RGB). For UAV1-RGB, we provide the dense
point cloud from bundle adjustment for each data collection date, which we cropped to follow the plots, resulting
in a point cloud for each plot and date. For UAV2-Lidar, there is one cumulative point cloud of the whole field
trial for each date, named “<YYMMDD >.las”. For UGV-LMI and UGV-Ouster, the point clouds are cropped
to follow the plots, with the filenames of UGV-LMI merged point cloud files named according to their collection
date “<YYMMDD > las”. Similarly, for UGV-Ouster, the point cloud filenames follow the naming convention
“<YYMMDD > las”. The UGV point clouds are organized into directories by plot and by date.

Orthophotos from UAV1-RGB, UAV2-RGB, UAV3-MS, and UAV3-RGB are included in the raster data
directory, with a child directory for each data package. For UAV1-RGB and UAV2-RGB, each orthophoto shows
that the entire field trial for a given date is stored in a *.tif file format and named “<YYMMDD >_ortho.tif”
For UAV3-MS, each multispectral reflectance orthophoto was named “<YYMMDD > tif”; refer Table 5 for the
details of each band. For UAV3-RGB, in addition to the orthophotos, we also provide the DEM files following
the filename nomenclature “<YYMMDD>_DEM.tif”.

The LAI_biomass_and_metadata directory contains metadata and reference measurements. md_
FieldManagement reports the field management notes, md_FieldSHP contains the shapefiles with details on
plot-level variabilities, and md_WeatherData includes data from the weather station. We also report meas-
urements taken on the field, including LAI measurements from the SunScan in md_SunScan, destructively
measured LAI of each plot and leaf area per plant for sugar beets and maize in md_Destructive_LAI, fresh
weight of the aboveground biomass for each plot (gm~2) and for individual plants of sugar beets and maize (g)
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Fig. 8 Example LAI from SunScan against the number of days since sowing and plot IDs of wheat and maize.
The error bars for the SunScan measurements indicate the minimum and maximum measurements.
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days sown. plant in a maize plot collected on 23.06.2023.

Fig. 9 Example plots of biomass and LAI from destructive measurements. In (a), we show the range of biomass
measurements obtained for multiple crops at various growth stages. In (b), we showcase the individual plant-
level data from destructive measurements.

in md_Biomass, and GCP locations in md_GCP. The areas where we took the destructive measurements are
denoted in the metadata md_DestructiveSHP. We included further metadata of images UAV3-MS, UGV-RGB,
shapefiles (md_FieldSHP and md_DestructiveSHP), and csv files (md_Biomass, md_Destructive_LAI,
md_SunScan, and md_WeatherData) in readme files located in their respective directories.

In the plot-wise directory, we provide a duplicate copy of our data, organized by plot, allowing users to down-
load sensor data for specific plots of interest. The data of each plot is further organized by dates, with data from
similar dates collated together. Under this organizational structure, we performed additional post-processing to
crop out each plot area, providing plot-wise data. We also performed further post-processing on the point clouds
of UAV2-Lidar and UGV-Ouster with statistical outlier removal and manual segmentation. This enables users
interested in plot-wise data to directly use our dataset without any further processing.

To further improve the usability of our large dataset, we also provide a sample of our data for download,
which includes all LAT and biomass measurements, as well as data from a single plot (plot ID 198) for a single
time point (~14.06.2023) for all data packages. Additionally, we also provide a sample of plot-wise data of the
aforementioned date and plot. To assist with downloading our dataset, we provide a user interface on our web-
site at https://www.ipb.uni-bonn.de/data/MuST-C/as well as plain text files containing the file URLs for auto-
mated downloads in our GitHub repository.

Technical Validation

Sensor Data and Georeferencing. We verified the quality of our dataset’s georeferencing of raster ortho-
photos and point clouds. For the orthophotos, we validated the georeferencing across time as well as across sensors
(UAV1-RGB, UAV2-RGB, UAV3-RGB, and UAV3-MS) by checking the consistency of the GCP locations. To this
end, we selected three GCPs, and selected at least three orthophotos from each sensor where the GCPs are visible.
We manually marked the location of each GCP in each orthophoto from all sensors, shown in Fig. 11, indicating
that the alignment of the GCP locations in most orthophotos across sensors and different collection dates is within
the expected range. For each sensor, the location error, i.e., mean distance to the actual GCP location, is 0.7 cm for
UAV1-RGB, 13.0 cm for UAV2-RGB, 2.3 cm for UAV3-RGB, and 1.9 cm for UAV3-MS. The error for UAV2-RGB is
higher than that of other sensors because GCPs were not used for their structure from motion optimisation. Overall,
the standard deviation of each GCP is at the centimeter level, which is sufficient for most phenotyping use cases.
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Fig. 10 Directory tree structure of our dataset. We provide our data in two alternative organizational structures
for the user to choose from. Firstly, we categorized all data packages according to their data type at the top level,
i.e., images for raw image data, point_clouds for 3D data points, raster_data for orthophotos, and LAI_biomass_
and_metadata for reference measurements and field data. Secondly, we provide an alternative organization of
our data in the “plot-wise” directory for use cases that require plot-level analysis.

For the point clouds, Fig. 12(a) illustrates the alignment of the point clouds from different sensors and shows
that the point clouds are well aligned, indicating the validity of each georeferenced point cloud. The stick with
the vertical experiment tag used to mark plots is fully aligned in all point clouds, with less than 10 cm discrep-
ancy mostly along the z-axis. In Fig. 12(b), we show the good alignment of the point clouds across time, and
similarly in Fig. 12(c), we show the good alignment of point clouds across sensors. In addition, the georef-
erencing accuracy of the UAV2-Lidar system has been investigated in our prior work®. For UGV-LMI and
UGV-Ouster, we registered and georeferenced the point clouds by fusing the SBG IMU and GNSS position
and heading data using a graph-based pose optimization approach as described in our prior work®!, which
results in a georeferencing accuracy of about 1-2 cm, where the repeatability of a single LMI laser line measure-
ment is reported by LMI Technologies by 12 micrometers (https://Imi3d.com/wp-content/uploads/2020/02/
DATASHEET_Gocator_2490_US_WEB.pdf) and the Ouster OS1 range precision is specified with 1 cm at a
range from 1-20 m (https://data.ouster.io/downloads/datasheets/datasheet-revd-v2p0-osl.pdf).

LAl Reference Measurements.  We validated the LAI measurements from the SunScan with destructive measure-
ments. Figure 13 plots the LAI measured using SunScan and destructive measurements on similar dates, i.e., at most one
day apart, to show the correlation between the two data types with the R? of 0.82 and root mean square error (RMSE) of
0.78. Where available, we report the LAI of the area where crops were sown; see the readme of md_SunScan for further
details. The correlation plot indicates a strong agreement between destructive measurements and SunScan measurements.

However, the SunScan and destructive LAI measurements have some discrepancies, likely due to the fol-
lowing points. Firstly, the plots were heterogeneous, particularly in maize and soybeans, leading to a high var-
iance in the SunScan measurements and deviation between SunScan and destructive measurements. We took
multiple repeated measurements in the plot with SunScan at different locations to fully capture the heteroge-
neity of the plot, but destructive measurements were taken only from one area per sample, which may not fully
reflect the whole plot. We marked the location where each destructive measurement was taken in a shapefile
md_DestructiveSHP for future LAI retrieval usage.

Secondly, SunScan measures LAI with PAR sensors and does not distinguish between green and brown vege-
tation, while destructive measurements only measure the green parts of leaves. This difference in measurements
leads to higher SunScan measurements for the later developmental stages of wheat, both in single crop plots and
intercrop plots, as the wheat senesces and sheds its lower leaves (heading and ripening).

Usage Notes

The MuST-C dataset can be used to estimate phenotypic traits, and here we illustrate this with an example use
case for LAI estimation. Moreover, our dataset comprises data from multiple sensors, where we can obtain
different phenotypic traits from each sensor using state-of-the-art methods. Here, we leverage RGB images for
crop-weed segmentation, plant instance counting, and leaf detection, multispectral reflectance orthophotos for
vegetation indices extraction, and point clouds for plant height and leaf angle estimation. While these methods
leverage the strengths of each sensor, our dataset is aligned over time and across sensor modalities so that we can
transform and merge these extracted traits from one sensor to another.
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Fig. 11 GCP locations of UAV1-RGB (green), UAV2-RGB (blue), UAV3-RGB (yellow), and UAV3-MS (red),
for each data collection date where the GCPs are visible. The GCP locations in the orthophotos are mostly
aligned across sensors and different collection dates.

Il UAV2-Lidar Il 13.06.2023
UGV-LMI N 21.06.2023
Il UGV-Ouster N 21.08.2023

[ UAV1-RGB

Il UAV2-Lidar
Front view Side view UGV-LMI
Il UGV-Ouster
[ UAV1-RGB

60cm

Fig. 12 Point clouds of the potato plots (a) across different sensors and (b) over time. In (a), when the potatoes
were just sown, we show the point clouds from UAV2-Lidar in red, UGV-LMI in yellow, UGV-Ouster in blue,
and UAV1-RGB in green. The alignment in X and Y direction is almost perfect, with the undulation of the soil
(75 cm row width) and the experiment tagging stick. Between the point clouds, there is a small discrepancy of
less than 10 cm in the Z direction. In (b), we show the point clouds from UGV-LMI for the same potato plant
across three dates (13.06., 21.06., and 21.08.) to show the alignment over time with our georeferenced sensor
data. In (c), we show the point clouds of three maize plants from the front (along a row) and the side. The
clouds have been generated from different sensor data, taken on the same day. The variations in density and
distribution of points between sensors are shown here.

LAl Estimation. In our dataset, we measured the LAI values using a SunScan sensor and destructive sampling
(Fig. 13). One of the use cases for this data set is to non-destructively derive LAI data from other sensor modal-
ities. We exemplify this approach in the derivation of LAI from UAV Lidar data using Beer’s Law>. We used ray
tracing to derive the probability of a laser ray being absorbed within the canopy and linked this to the LAI of the
crop. Figure 14 shows the result in comparison with the data from the SunScan sensor. Other potential methods
include multi-view geometry approaches based on the images!” or direct modelling of the plant structure’.
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Fig. 13 SunScan validation plot of LAI measured using SunScan against LAI measured with destructive
measurements, with RMSE of 0.78 and R? of 0.82. The error bars for the SunScan measurements indicate the
minimum and maximum measurements.

6 - ' 9 - .
—o—TUAV: Median g | |—*—UAV: Median
St UAV: MAD 71 UAV: MAD
A SunScan: Median A SunScan: Median
41 __SunScan: MAD 6} ——SunScan: MAD
— — 5t
< 3! <’
= — 4t % 1
2 3t ]
1 i ) S
11
0 00—0C : : 0 o004 — :
May Jun Jul Aug Sep May Jun Jul Aug Sep
2023 2023

Fig. 14 Example results of LAI from UAV2-Lidar data over several dates. We show the median and Mean
Absolute Deviation (MAD) of the LAI estimated from UAV2-Lidar data and reference measurements from
SunScan for maize (left) and sugar beet (right).

Plant Counting. In addition to LAI estimation, several phenotypic traits and auxiliary information can be
extracted using deep learning methods. Firstly, from the RGB images (e.g., Fig. 15(a)), we can obtain the plant
count of a given plot using panoptic segmentation®” methods. Figure 15(b)(c) shows the results of a panoptic seg-
mentation method!® trained on a labeled dataset’, on an RGB image from MuST-C’s UAV1-RGB. Qualitatively,
the method can perform plant counting relatively well despite using weights trained on a different dataset.

Crop Leaves Extraction. Several phenotypic traits and phenological development (expressed with the
BBCH scale®) are related to the leaves of the crop, leaf length and width, and leaf angle. To assist in extracting
these traits, we can first detect individual leaves of the crop. In Fig. 15(d), we show an example of instance seg-
mentation’®, which includes segments of individual leaf instances.

Vegetation Indices. Vegetation indices are useful for use cases such as LAI estimation!*, vegetation classi-
fication*’, biomass estimation®, and so on. We can extract these vegetation indices using the multispectral and
RGB products of our dataset. As an example, from the multispectral data of UAV3-MS, we extracted vegetation
indices such as NDVI*), NDRE®, EVI*, and OSAVI*, shown in Fig. 15(e).
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Fig. 15 By leveraging the strengths of each sensor, our multi-sensor dataset enables several use cases such
as (b) crop-weed semantic segmentation (c) plant count, and (d) leaf segmentation from RGB images (a),(e)
vegetation indices ((i) NDVT, (ii) EVT, (iii) NDRE, and (iv) OSAVI) from multispectral images, and (f) plant
height and (g) leaf angle from point clouds.

Plant Height Extraction. The plant heights can be extracted from all point clouds by approximating a
ground surface and calculating the differences to the ground (see Fig. 15(f)). To provide height values on plot
level, mostly the mean of points above the 95th percentile of all height values in the crop for each plot is used*.

Leaf Angle Estimation. The orientation of the leaf surfaces of plants is often referred to as ‘leaf angle distribution’
and determines how the canopy intercepts light. It is a crucial parameter in crop modelling and breeding, as it influences
photosynthesis, biomass accumulation, and water-use efficiency. While there is no commonly used sensor to measure the
leaf angles in field environments, the leaf angle distribution can be estimated using the high-resolution point clouds from the
UGV-based triangulation scanners’. Figure 15(g) shows the local surface orientation for the points of some sugar beet plants.

Data availability
As mentioned in the section on Data Records, our data is available for download at our data repository https://
doi.org/10.60507/FK2/OX9XTM?*, which follows the nomencular conventions from Fig. 10.

Code availability

The custom Python code for loading the MuST-C dataset, processing the leaf area destructive measurements,
converting multispectral orthophotos, and plotting the graphs in Figs. 8, 9, 13 is made publicly available at https://
github.com/PRBonn/MuST-C. We also provide a developer’s kit to process our dataset (e.g., to organize the data
at the plot level) in the same GitHub repository.
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