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The Multi-Sensor and Multi-
Temporal Dataset of Multiple  
Crops for In-Field Phenotyping  
and Monitoring
Yue Linn Chong   1 ✉, Julie Krämer2, Erekle Chakhvashvili2, Elias Marks1,3, Felix Esser3, 
Ansgar Dreier3, Radu Alexandru Rosu4, Kevin Warstat2, Ralf Pude5,6, Sven Behnke4,7, 
Onno Muller   2, Uwe Rascher   2,5, Heiner Kuhlmann   1,3, Cyrill Stachniss   1,7, Jens Behley1 
& Lasse Klingbeil   1,3

Phenotyping is crucial for understanding crop trait variation and advancing research, but is currently 
limited by expensive, labor-intensive monitoring. New phenotypic trait monitoring methods are being 
proposed to reduce this so-called phenotyping bottleneck via automation. These methods are often 
data-driven, requiring a dataset recorded with a specific sensor and corresponding reference values 
for developing novel methods. To this end, we present the MuST-C (Multi-Sensor, multi-Temporal, 
multiple Crops) dataset, which contains field data from various sensors collected over a growing season, 
covering six crop species. All data was georeferenced for alignment across sensors and dates. To collect 
our dataset, we deployed aerial and ground robotic platforms equipped with RGB cameras, LiDARs, and 
multispectral cameras, aiming to capture a wide variety of modalities and observations from different 
viewpoints. In addition to sensor data, we also provide manually collected leaf area index and biomass 
reference measurements. Our dataset enables the development of novel automatic phenotypic trait 
estimation methods, allows comparisons across different sensors, and generalizability across crop 
species.

Background & Summary
Agricultural systems need to meet the demands of a growing population while coping with climate change1,2. 
The efficiency of sustainable agricultural systems can be increased through research and development of crop 
varieties that can both provide high yields and cope with climate impacts3,4. Breeding such crop varieties and 
investigating innovative management methods requires assessing traits based on phenotypic measurements5. 
However, phenotyping is a time-consuming and laborious task that is still often performed manually using 
destructive measurements. The frequency of manual measurements is limited by labor costs, and the destructive 
nature of these measurements further increases resource requirements, as substantial plant material and plot 
area are needed. These limitations restrict the rate at which measurements can be generated, leading to slower 
breeding decisions3.

Moving towards high-throughput phenotyping of plants by automation6–9 is, therefore, a key stepping stone 
towards high temporal frequency, repeatability, and objectiveness of measurements for phenotypic trial experi-
ments. The development of innovative high-throughput phenotyping methods using mobile sensing is enabled 
by the availability of domain-specific data under real-world conditions. While some real-world agricultural field 
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datasets are available10–12, these datasets often only represent a single growth stage, crop, or sensor type and are 
not developed for reusability. Thus, currently, we cannot directly compare different approaches that use differ-
ent sensor modalities, study the effects of various growth stages on the performance of developed methods, or 
investigate the capabilities of developed approaches on multiple crops or sensors.

We fill this gap by providing a multi-sensor, multi-temporal, multi-crop (MuST-C) dataset (c.f. Fig. 1) to sup-
port research in high-throughput phenotyping by accelerating the development of algorithmic approaches for 
phenotypic trait estimation. To this end, we performed measurements using different sensing modalities, includ-
ing RGB cameras, multispectral cameras, and range measurements from light detection and ranging (LiDAR) 
sensors, over multiple growth stages on a field trial with multiple crops. We mounted the sensors on robotic 
platforms, i.e., unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs), equipped with global 
navigation satellite system (GNSS) receivers for georeferencing, which enabled us to provide the data in the 
same reference frame such that all data is aligned across sensors and over time. To evaluate newly developed 
approaches, we provide reference data acquired with conventional measurements of plant traits, specifically, the 
biomass and the leaf area index (LAI). We measured the LAI using a hand-held commercial canopy analyzer 
(i.e., SunScan canopy analysis system), and validated the measurements with destructive measurements using 
the WinDIAS leaf area meter.

In addition to LAI13,14 and biomass estimation15, our MuST-C dataset is useful for addressing other tasks, 
such as crop-weed segmentation16, plant counting16,17, leaf counting18,19, vegetation index retrieval, plant 
height20, and leaf angle distribution7. Furthermore, additional tasks that our dataset supports include plant 
reconstruction21, plant density estimation22, vegetation segmentation23,24, or radiation use efficiency estimation3. 
In line with growing interest in foundation models25–28, our data can be used for self-supervised pretraining 
foundation models for agricultural applications, such as weed semantic segmentation9, disease detection29, or 3D 
reconstruction12. Our dataset provides the novelty of aligned data from multiple sensors, possibly for compar-
ison and development of novel methods from different sensor modalities, including sensor fusion approaches.

Methods
Experimental Design.  Figure 2 shows an orthophoto of the field trial, located at the Campus Klein-
Altendorf research facility, University of Bonn, Germany (50 37� ′ North, 6 59′�  East). The study site soil was classi-
fied as Haplic Luvisol, with a loamy siltic texture, and had high nitrogen levels (100 kg total available Nitrogen per 
hectare) in the plow layer, which decreased in the subsoil. The crops were cultivated in rectangular plots of 7.5 m 
by 6 m. The field experiment spanned one growing season in the spring of 2023; Table 1 shows the sowing and 
harvest dates for each crop. We report weather data collected from a Campbell Scientific environmental station 
equipped with a CS310 quantum sensor, a ClimaVUE50 weather sensor, and a CS655 soil moisture sensor 
(Campbell Scientific, Logan, UT, USA).

Our multi-crop field trial consists of six sub-experiments, comprising five monocultures: (i) sugar beet (Beta 
vulgaris L.), (ii) spring wheat (Triticum aestivum L.), (iii) sweet corn (Zea mays L.), (iv) soybean (Glycine max 
L.), and (v) potato (Solanum tuberosum L.), as well as a wheat-faba bean (Vicia faba L.) intercrop experiment, 
i.e., where wheat and faba bean crops are sown in the same plot.

In the sugar beet experiment, we tested different herbicide concentrations applied on the variety BTS 440: 
(i) 0% (no herbicide), (ii) 50%, (iii) 75%, and (iv) 100% of the amount used following standard agricultural 
practice of herbicide application. Sugar beet plants were sown on different dates for each column of plots to 

Fig. 1  Overview of our dataset, comprising a field trial with multiple crops, with sensor data collected at several 
time points. We collected data using multiple sensors; here, we showcase our georeferenced data, showing the 
same location in a sugar beet plot across multiple sensors in the middle section. From top left, we show the 
data from RGB orthophotos, multispectral orthophotos, four of the 20 RGB instantaneously captured images, 
a colored dense point cloud from RGB structure-from-motion, and the high-resolution LiDAR point cloud 
(highlighted in red, we showcase the detailed point cloud of a single plant). With our georeferenced data, we 
can align data from different sensors and dates. In addition, we provide destructive reference measurements for 
aboveground fresh weight and LAI for the field trials.
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study the earlier stages of development. In the wheat experiment, we tested the wheat of the Granus variety 
with four sowing densities: (i) 150 seeds m−2, (ii) 250 seeds m−2, (iii) 350 seeds m−2, and (iv) 450 seeds m−2. The 
experiment followed a randomized complete block design with four replicates (n = 4) allocated to the plots. In 
the sweet corn experiment, we tested four varieties (Khan, Popcorn Robust, Mirza, and Caramelo), while in the 
soybean experiment, we tested two varieties (Eiko and Minngold). Both experiments followed a randomized 
complete block design with the replication n = 4 allocated to the plots. We planted two varieties of potatoes 
(Belana and Gala) using a two-block design. We managed the five monoculture trials conventionally, following 
standard agricultural practice in the region. In the wheat-faba bean trial, we compared organically grown inter-
crops with their respective monocultures as controls. The monocropped wheat was sown at 320 seeds m−2 and 
monocropped faba bean were sown at 36 seeds m−2. The intercrops were established as a 1:1 cereal-legume mix-
ture using half of the monocrop sowing density per crop. We tested two mixtures: (i) Fanfare (faba bean) with 
short-growing Anabel (spring wheat) and (ii) Fanfare with tall-growing Sorbas (summer wheat). No fertilizers 
or herbicides were applied in this trial to mimic organic farming practices. The experiment was arranged in a 
two-block design: one block contained the mixture treatments (each with two replicates), while the second block 
was assigned to the mono-crop treatments (two replicates for faba bean and no replication for spring wheat).

UAV and UGV Data Acquisition and Processing.  We collected data from the aforementioned field 
experiment using different sensor modalities equipped on three different UAVs (UAV1, UAV2, and UAV3) 
and a UGV. Table 2 shows a complete summary of our data products, Table 3 shows the platforms used in our 

Fig. 2  Orthophoto of the field trial area (top) and field trial layout (bottom). In the orthophoto, we denote the 
area of each species with white dashed lines. We designated an area for destructive measurements, shown here 
in light blue. In the field layout, we show the plot ID (bottom) and crop genotype (top) for each plot. We color-
coded the plots based on the crops with sugar beets in green, wheat in red, maize in orange, soybean in pink, 
potato in brown, and intercrops in blue. For sugar beet plots, we mark the herbicide levels. For the wheat plots, 
we mark the seed density in seeds per square meter.

Species Sowing Date (week #) Harvest Date (week #)

Sugar beet 05.05.2023 (18) N.A.

Wheat 25.04.2023 (17) 23.08.2023 (34)

Maize 18.05.2023 (20) 16.10.2023 (42)

Soybean 05.05.2023 (18) 11.10.2023 (41)

Potato 19.05.2023 (20) 27.09.2023 (39)

Wheat and faba 
bean intercrop

02.05.2023 – 
03.05.2023 (18)

22.08.2023 – 
22.08.2023 (34)

Table 1.  Sowing dates and harvest dates of each species. We harvested the sugar beets at a later date after the 
duration of this dataset’s development.
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measurement campaign, and Table 4 shows the weeks and crops for each data package. In the following, we 
describe the different sensors and the collected data.

Sensor Data Package Sensor Name Sensor Manufacturer Products Resolution

RGB Camera (high resolution) UAV1-RGB PhaseOne iXM-100 RGB camera PhaseOne, Copenhagen, Denmark images, orthophotos, 
point clouds

11664 × 8750 
px; 105 pts m−2

LiDAR UAV2-LIDAR RIEGL miniVUX-SYS RIEGL Laser Measurement Systems 
GmbH, Horn, Austria point clouds 103 pts m−2

RGB UAV2-RGB Sony α 7R Sony, Tokyo, Japan images, orthophotos 17320 × 6046 
px

Multispectral UAV3-MS RedEdge-MX Dual Camera 
System

AgEagle Sensor Systems Inc., Wichita, 
KS, USA images, orthophotos 1280 × 960 px

RGB UAV3-RGB Sony α 7R Sony, Tokyo, Japan images, orthophotos 6240 × 4160 px

RGB (20 cameras) UGV-RGB Nikon Z7 (20 cameras) Nikon Corporation, Tokyo, Japan images 8256 × 5504 px

Laser Triangulation Scanner UGV-LMI LMI Gocator 2490 laser 
triangulation scanners LMI Technologies, Burnaby, Canada point clouds 106 pts m−2

LiDAR UGV-Ouster Ouster OS1 Ouster, Inc., San Francisco, CA, USA point clouds 104 pts m−2

Non-destructive LAI md_SunScan SunScan Plant canopy analyzer Delta-T Devices Ltd., Cambridge, UK LAI N/A

Destructive LAI md_Destructive_LAI WinDIAS Leaf Image Analysis 
System Delta-T Devices Ltd., Cambridge, UK LAI N/A

Biomass md_Biomass N/A N/A Aboveground fresh 
weight N/A

Table 2.  The data types in our dataset. We collected five modalities with robotic platforms and manually 
collected LAI and biomass reference measurements. We collected all the data in the same field trial. We report 
the image resolution for RGB and multispectral sensors and report the approximate points per square meter for 
the point clouds provided.

Platform UAV1 UAV2 UAV3 UGV

Name DJI Matrice 300 RTK 
(M300) DJI Matrice 600 PRO (M600) DJI Matrice 600 PRO (M600) Thorvald II + custom 

aluminum housing

Manufacturer SZ DJI Technology Co., 
Ltd., Shenzhen, China

SZ DJI Technology Co., Ltd., 
Shenzhen, China

SZ DJI Technology Co., Ltd., 
Shenzhen, China

Saga Robotics, Oslo, 
Norway

GNSS RTK (built-in) RTK (built-in) + Applanix APX-
20 IMU + Applanix AV14 GNSS RTK (built-in) multi-GNSS and SBG 

Ellipse D IMU

Altitude 21 m 30 m 25 m N/A

Flight plan
lawnmower pattern 
(perpendicular to the field 
plots)

cross-flight pattern (15 m side 
distance)

lawnmower pattern (parallel to 
the Sun’s trajectory) N/A

Table 3.  UAVs and UGVs used for data collection. Further details about the UGV can be found in our prior 
publication31.

Table 4.  Calendar weeks where we collected data for each data package and crop species. Legend: : Sugar Beet, 
: Wheat, : Maize, : Soybean, : Potato, : Intercrop.
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UAV1 High-Resolution RGB Images (UAV1-RGB).  Figure 3 shows the UAV setup and products for UAV1-RGB. 
We collected high-resolution RGB images (11664 × 8750 pixels) in nadir view, i.e., where the camera points 
directly below, perpendicular to the ground. The captured images had a 70% overlap on the sides and a 74% 
overlap frontally. We flew UAV1 at an altitude of 21m, to obtain images with a ground sampling distance of 
approximately 1 mm. Using the Agisoft Metashape Pro software package, we performed structure from motion 
via bundle adjustment initialized with RTK poses, aligned using ground control points (GCPs), and obtained a 
photogrammetric point cloud and an orthophoto for each collection date.

UAV2 LiDAR Point Clouds (UAV2-Lidar).  Figure 4 shows the UAV setup and products for UAV2-Lidar. We 
outfitted the UAV2 with a RIEGL miniVUX-SYS consisting of the RIEGL miniVUX-2UAV 2D laser scanner 
and the Applanix APX-20 inertial measurement unit (1mm) (Applanix, Richmond Hill, Ontario, Canada). We 
configured the LiDAR sensor to the laser pulse repetition rate of 200 kHz and the scan speed of 53.80 lines per 
second. For georeferencing, we used a reference station to estimate the GNSS baseline and performed pose 
estimation using the Applanix POSPac software with the IMU and additional GNSS data. We used the soft-
ware RIEGL RiPROCESS for direct georeferencing, which combined the trajectory and LiDAR data, with strip 
adjustment correction to improve the trajectory by using multiple flight strips. We filtered the LiDAR data by 
the maximum range of 45 m, and the resulting georeferenced point cloud has a mean density of 1433 pts m−2.

UAV2 RGB Images (UAV2-RGB).  In addition to the LiDAR data, we used the same UAV2 to simultaneously 
capture RGB data at 1.5 s intervals. We processed the images using the Agisoft Metashape Pro to obtain the 
orthophoto of the field for each date, an example of which is shown in Fig. 4. The orthophotos have a ground 
sampling distance of approximately 1 cm.

UAV3 Multispectral Images (UAV3-MS).  We collected multispectral images using UAV3, mounted with the 
multispectral cameras with 10 bands, detailed in Table 5. The cameras point directly below, perpendicular to 
the ground, using the Ronin MX gimbal (SZ DJI Technology Co., Ltd., Shenzhen, China) to acquire images of 
the entire field trial with a ground sampling distance of 3 cm. Figure 5 shows the UAV setup and products for 
UAV3-MS. The UAV followed a lawnmower pattern, with an overlap of 90 % along the flight path and 65 % on the 
sides. To ensure valid orthophotos, we planned the flight campaigns on days with stable illumination conditions.

We calibrated each orthophoto’s reflectance with nine calibration panels with near-Lambertian surfaces and 
contrasting reflectance factors ranging from black to white, placed on the ground before each flight. Each panel 

Fig. 3  From the top left, the UAV setup consisting of the M300 with the PhaseOne camera (highlighted in red), 
which captured high-resolution images; the images have a large field of view, yet the small details are also visible 
(in blue). We performed structure from motion using these high-resolution RGB images and obtained a dense 
point cloud and an orthophoto.
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has precisely defined, measurable reflectance values ranging from 2% to 63% reflectance. We placed the nine 
panels with some distance apart to avoid adjacency effects of the panels (neighboring panels contaminating 
each other’s reflectance). We put them on the bare soil to prevent the influence of the vegetation. We processed 
the raw multispectral images to radiance units30 and georeferenced them using ground control points using the 
Agisoft Metashape Pro software package to obtain the camera extrinsic calibration and multispectral orthopho-
tos with the same resolution as the raw images. For accurate georeferencing, we recalibrated the camera poses 
using GCPs evenly distributed in the field trial. The exact location of each GCP was measured using the GNSS 
Receiver HiPer VR (Topcon Positioning Systems, Inc., Tokyo, Japan), with a relative base error of 5 mm hori-
zontally and 10 mm vertically; and additional distance-dependent error of 0.5 parts per million horizontally and 
0.8 parts per million vertically. We calibrated the multispectral reflectance orthophotos using the empirical line 
method30. In summary, UAV3-MS contains the multispectral images, camera calibrations, and multispectral 
reflectance orthophotos of the entire field for each collection date.

UAV3 RGB Images (UAV3-RGB).  In addition to the multispectral data of UAV3-MS, we also recorded RGB 
data during each UAV3 flight. We mounted an RGB camera on the same gimbal as the RedEdge and captured 
RGB images in sync with the multispectral images. From these RGB images, we obtained digital elevation mod-
els (DEMs) and orthophotos using the Agisoft Metashape Pro. The orthophotos have a ground sampling dis-
tance of approximately 3 cm, with an estimated overlap of approximately 80 % along the flight path and 75 % to 
the sides. In summary, UAV3-RGB contains the RGB images, RGB camera calibrations, RGB orthophotos, and 
DEMs for each collection date (Fig. 5).

UGV RGB Multi-Cameras (UGV-RGB).  Our UGV was equipped with 20 RGB cameras to capture images 
instantaneously, at the resolution of 45.7MP (8256 × 5504 pixels). We strategically positioned the cameras along 
the interior surfaces of the UGV and adjusted their zoom levels to capture a larger crop area. A translucent plas-
tic sheet was attached to the sides of the UGV to minimize motion artifacts by shielding the plants from wind 
and reducing harsh shadows caused by bright sunlight. The UGV followed the path along the area of destructive 
sampling shown in Fig. 2, and captured images of the field trial. We collected the multi-camera data at the lower 
growth stages and stopped when the canopy was too tall or crowded. For each day, we manually calibrated each 
camera’s zoom level based on the crop canopy height. Esser et al.31 described the sensor setup in more detail. 
We sorted the sets of images based on the field plots. We calibrated the camera intrinsic and scaled extrinsics 
of each day using the Agisoft Metashape Pro. In summary, the UGV-RGB data package contains the sets of 
instantaneously captured 20 RGB images organized by plots and camera calibrations for each collection date. 
Figure 6 shows the UGV and cameras, and an example set of 20 instantaneously captured images, which we used 
to generate a mesh.

UGV LiDAR Point Clouds (UGV-LMI and UGV-Ouster).  We mounted two LMI laser triangulation scanners 
and an Ouster OS1 64-beam LiDAR on our UGV. The two triangulation scanners, mounted on the left and right 
sides of the UGV, had an overlapping field of view, and the multi-beam Ouster LiDAR at the front of the UGV 
was angled downward. We drove the UGV across all the plots in the field trial along the area of destructive sam-
pling shown in Fig. 2.

Fig. 4  From top left, the UAV setup of the UAV2 with the RIEGL LiDAR (highlighted in red) and Sony RGB 
camera (highlighted in blue). We processed the data to obtain point clouds and orthophotos of the field.
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For georeferencing, we interpolated the trajectory with respect to the laser data and transformed each laser 
profile from the scanners into a global coordinate frame (UTM, WGS84). We performed the system calibration 
(i.e., the estimated transformation between the scanners and the inertial navigation system’s frame) using a 3D 
point feature approach32. With the calibrations, for each LiDAR (left LMI, right LMI, and Ouster), the sequences 
of point clouds were respectively merged into a single large point cloud, which was then cropped and organized 
by plot.

Each 3D point in the point clouds contains time (UTC) and laser intensity ranging from 0 to 255. The point 
clouds from the left and right LMI scanners were not aligned to each other in the raw point clouds, and some mis-
alignment between the two sensors may occur due to deformation (<10 cm) of the UGV when traversing uneven 
or soft ground. Therefore, we performed post-processing to merge the point clouds from the left and right LMIs 
using a custom plane-to-plane iterative closest point algorithm to obtain the final merged point clouds.

Figure 7 shows the UGV setup and laser sensors used, as well as an example of an LMI point cloud (left and 
right scanner combined) for a soybean plot, and an example of the Ouster point cloud for a soybean plot; notice 
that the LMI point cloud has a higher density compared to the Ouster, where single plant organs are distinguish-
able with more detail. In short, UGV-LMI and UGV-Ouster respectively comprise one cropped point cloud for 
each plot and collection date.

SunScan LAI Data Acquisition and Processing.  We took non-destructive LAI measurements with the 
SunScan Canopy Analysis System on the dates indicated in Table 4. All measurements were taken during midday 
(approximately between 12:00 and 15:30 local time), under mostly sunny conditions, and were repeated 10 times 

Orthophoto Band Name Center Wavelength (nm) Bandwidth (nm)

01 Costal blue 444 28

02 Blue 475 32

03 Green 1 531 14

04 Green 2 560 27

05 Red 1 650 16

06 Red 2 668 14

07 Red Edge 1 705 10

08 Red Edge 2 717 12

09 Red Edge 3 740 18

10 Near-infrared (NIR) 842 57

Table 5.  Multispectral bands of the RedEdge-MX Dual Camera System used for UAV3-MS and their 
corresponding bands in our reflectance orthophotos.

Fig. 5  From top left, the UAV3 used to carry multispectral RedEdge cameras (in red box), which captured 
multispectral images (top middle). We processed the multispectral images to obtain orthophotos of the field 
trial with 10 reflectance channels. The same UAV also carried an RGB camera (highlighted in light blue), which 
captured RGB images during the same flight. We performed structure from motion with these RGB images to 
obtain an RGB orthophoto for each collection date.

https://doi.org/10.1038/s41597-025-06462-y


8Scientific Data |           (2026) 13:17  | https://doi.org/10.1038/s41597-025-06462-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

for the plots of sugar beet, wheat, maize, soybean, and wheat-faba bean intercrop trials of plots given in Table 6. 
The SunScan system consisted of an incoming light sensor and a probe. The incoming light sensor measured 
both direct and diffuse incoming radiation above the canopy and was placed on a tripod near the measurement 
area. The probe had 64 photosynthetically active radiation (PAR) sensors. We placed the probe diagonally below 
the canopy and spanning across multiple crop rows, in the center of the plot, to measure the under-canopy PAR. 
From the incoming light sensor and probe measurements, we calculated the LAI with the SunScan proprietary 
software, where we set the estimated leaf angle distribution parameter (ELADP) based on the crop species, as 
shown in Table 6. Figure 8 shows the plots of the LAI of each crop species over time.

Destructive Biomass and LAI Data Acquisition and Processing.  We measured the aboveground 
fresh weight of plants sampled destructively from the field trial from the designated area shown in Fig. 2, on dates 
indicated in Table 4, for selected plots listed in Table 6. We harvested the length of ls, of rs ∈ {4, 5} rows of wheat 
and intercrops, respectively, and an area of approximately 1 m2 for all other crops to obtain Ns plant individuals. 
We weighed each sugar beet and maize plant individually to record the biomass per plant. We avoided harvesting 
plants around the plot edges to minimize edge effects, and weighed the plants immediately after harvesting to 
obtain the biomass measurement m. Finally, we calculated the fresh weight of the aboveground biomass per meter 
mcrop (in g/m−2) of the plot with: 
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 where rm is the number of rows per meter of the plot, and Nm is the average number of plants per meter of the plot.
In addition, we measured the destructive leaf area using the WinDIAS 3 image analysis system leaf scanner. 

These destructively obtained LAI measurements were used to validate the SunScan LAI measurements (see 
Technical Validation section). On dates indicated in Table 4 and for selected plots listed in Table 6, after meas-
uring the biomass of the harvested samples, we separated a subsample of the plants to scan for leaf area. From 
these plants, we detached all leaves from the stems and scanned each leaf using the WinDIAS 3 leaf scanner, 
with an overhead camera that takes images at 4 Hz to obtain total leaf area A. We scanned each sugar beet and 
maize plant individually to record the leaf area per plant. We scaled the total leaf area A to estimate the LAI of the 
plot, where LAI is the unitless ratio of measured green leaf area in square meters to one square meter of ground 
surface33 (m2 m−2) with: 
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 where mw is the biomass of the plants subsampled and scanned for LAI, ls is the length of the rows harvested in 
meters. The destructive leaf area measurements have an accuracy of ±4%, as reported by the WinDIAS man-
ufacturer, but due to the scaling in Eq. (2), the calculated LAI is expected to have a poorer accuracy. Figure 9 
shows example graphical plots of the destructively measured biomass and LAI.

Data Records
The MuST-C dataset is available via our project webpage https://www.ipb.uni-bonn.de/data/MuST-C/or directly 
via the bonndata public access repository https://doi.org/10.60507/FK2/OX9XTM34. Figure 10 illustrates the 
directory tree structure of our data records. We provide our data in two formats to support different use cases. 
Firstly, we organized the data into four directories according to their data types: (i) images, (ii) point clouds, (iii) 
raster data, and (iv) reference measurements and metadata. Secondly, for users interested in plot-level data, we 

Fig. 6  This figure shows the UGV (left) with the mounted cameras (one highlighted in red). There are 20 
cameras mounted in the UGV, simultaneously capturing 20 images (middle). We used these images to perform 
structure from motion and obtained a 3D representation of the captured area (right).
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provide our data organized by plot in the “plot-wise” directory. Note that the information in both structures is 
duplicated; the users are free to choose the organization structure that best suits their use case.

The images directory consists of RGB and multispectral image files from UAV1-RGB, UAV2-RGB, UAV3-RGB, 
UAV3-MS, and UGV-RGB, with a child directory for each data package and a child directory for each date. For 
UGV-RGB, we organized the data into directories based on plots, and we sorted each set of 20 images into a directory, 
with each image filename following the nomenclature “nikon_<camera ID>.jpeg”. For the multispectral images of 
UAV3-MS, image filenames follow the nomenclature “IMG_<image ID>_<band ID>.tif ”, following band IDs in 
Table 5. All camera calibrations were provided in the same directory as the images, in two alternative plain text for-
mats, “cam_params.txt” and “cam_params.xml”.

The point clouds directory includes the LiDAR data (UAV2-Lidar, UGV-LMI, and UGV-Ouster) and the 
structure-from-motion dense point cloud of RGB images (UAV1-RGB). For UAV1-RGB, we provide the dense 
point cloud from bundle adjustment for each data collection date, which we cropped to follow the plots, resulting 
in a point cloud for each plot and date. For UAV2-Lidar, there is one cumulative point cloud of the whole field 
trial for each date, named “<YYMMDD>.las”. For UGV-LMI and UGV-Ouster, the point clouds are cropped 
to follow the plots, with the filenames of UGV-LMI merged point cloud files named according to their collection 
date “<YYMMDD>.las”. Similarly, for UGV-Ouster, the point cloud filenames follow the naming convention 
“<YYMMDD>.las”. The UGV point clouds are organized into directories by plot and by date.

Orthophotos from UAV1-RGB, UAV2-RGB, UAV3-MS, and UAV3-RGB are included in the raster data 
directory, with a child directory for each data package. For UAV1-RGB and UAV2-RGB, each orthophoto shows 
that the entire field trial for a given date is stored in a *.tif file format and named “<YYMMDD>_ortho.tif ” 
For UAV3-MS, each multispectral reflectance orthophoto was named “<YYMMDD>.tif ”; refer Table 5 for the 
details of each band. For UAV3-RGB, in addition to the orthophotos, we also provide the DEM files following 
the filename nomenclature “<YYMMDD>_DEM.tif ”.

The LAI_biomass_and_metadata directory contains metadata and reference measurements. md_
FieldManagement reports the field management notes, md_FieldSHP contains the shapefiles with details on 
plot-level variabilities, and md_WeatherData includes data from the weather station. We also report meas-
urements taken on the field, including LAI measurements from the SunScan in md_SunScan, destructively 
measured LAI of each plot and leaf area per plant for sugar beets and maize in md_Destructive_LAI, fresh 
weight of the aboveground biomass for each plot (gm−2) and for individual plants of sugar beets and maize (g) 

Fig. 7  From top right, the UGV equipped with the Ouster LiDAR (highlighted in light blue), which we used 
to obtain a point cloud (top right). We also mounted the UGV with two LMI scanners, on the left and right 
(bottom left); the left LMI is highlighted in blue and the right LMI in orange. We mounted the two LMIs to have 
an overlapping field of view over the crop plants. We processed the LMI outputs to obtain a georeferenced dense 
point cloud (bottom middle). The point clouds have a high resolution, and individual plant organs are visible 
(bottom right, soy bean leaves manually cropped out).

Species SunScan plot IDs ELADP Destructive LAI plot IDs Biomass plot IDs

Sugar beet 178, 179, 198, 199 1.55 178, 198 178, 198

Wheat 174 – 177 0.96 174, 176 174, 176

Maize 170 – 173, 190 – 193 1.37 191, 192 191, 192, 172, 173

Soybean 168, 169, 188, 189 4.1 168, 169, 188, 189 168, 169, 188, 189

Intercrop 162, 163, 182, 183 0.96 162, 163, 182, 183 162, 163, 182, 183

Table 6.  The plot IDs where we took SunScan measurements, the ELADP used to calculate LAI for SunScan, 
plot IDs where we took destructive LAI measurements, and plot IDs where we took destructive biomass 
measurements.
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in md_Biomass, and GCP locations in md_GCP. The areas where we took the destructive measurements are 
denoted in the metadata md_DestructiveSHP. We included further metadata of images UAV3-MS, UGV-RGB, 
shapefiles (md_FieldSHP and md_DestructiveSHP), and csv files (md_Biomass, md_Destructive_LAI,  
md_SunScan, and md_WeatherData) in readme files located in their respective directories.

In the plot-wise directory, we provide a duplicate copy of our data, organized by plot, allowing users to down-
load sensor data for specific plots of interest. The data of each plot is further organized by dates, with data from 
similar dates collated together. Under this organizational structure, we performed additional post-processing to 
crop out each plot area, providing plot-wise data. We also performed further post-processing on the point clouds 
of UAV2-Lidar and UGV-Ouster with statistical outlier removal and manual segmentation. This enables users 
interested in plot-wise data to directly use our dataset without any further processing.

To further improve the usability of our large dataset, we also provide a sample of our data for download, 
which includes all LAI and biomass measurements, as well as data from a single plot (plot ID 198) for a single 
time point (~14.06.2023) for all data packages. Additionally, we also provide a sample of plot-wise data of the 
aforementioned date and plot. To assist with downloading our dataset, we provide a user interface on our web-
site at https://www.ipb.uni-bonn.de/data/MuST-C/as well as plain text files containing the file URLs for auto-
mated downloads in our GitHub repository.

Technical Validation
Sensor Data and Georeferencing.  We verified the quality of our dataset’s georeferencing of raster ortho-
photos and point clouds. For the orthophotos, we validated the georeferencing across time as well as across sensors 
(UAV1-RGB, UAV2-RGB, UAV3-RGB, and UAV3-MS) by checking the consistency of the GCP locations. To this 
end, we selected three GCPs, and selected at least three orthophotos from each sensor where the GCPs are visible. 
We manually marked the location of each GCP in each orthophoto from all sensors, shown in Fig. 11, indicating 
that the alignment of the GCP locations in most orthophotos across sensors and different collection dates is within 
the expected range. For each sensor, the location error, i.e., mean distance to the actual GCP location, is 0.7 cm for 
UAV1-RGB, 13.0 cm for UAV2-RGB, 2.3 cm for UAV3-RGB, and 1.9 cm for UAV3-MS. The error for UAV2-RGB is 
higher than that of other sensors because GCPs were not used for their structure from motion optimisation. Overall, 
the standard deviation of each GCP is at the centimeter level, which is sufficient for most phenotyping use cases.

Fig. 8  Example LAI from SunScan against the number of days since sowing and plot IDs of wheat and maize. 
The error bars for the SunScan measurements indicate the minimum and maximum measurements.

Fig. 9  Example plots of biomass and LAI from destructive measurements. In (a), we show the range of biomass 
measurements obtained for multiple crops at various growth stages. In (b), we showcase the individual plant-
level data from destructive measurements.
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For the point clouds, Fig. 12(a) illustrates the alignment of the point clouds from different sensors and shows 
that the point clouds are well aligned, indicating the validity of each georeferenced point cloud. The stick with 
the vertical experiment tag used to mark plots is fully aligned in all point clouds, with less than 10 cm discrep-
ancy mostly along the z-axis. In Fig. 12(b), we show the good alignment of the point clouds across time, and 
similarly in Fig. 12(c), we show the good alignment of point clouds across sensors. In addition, the georef-
erencing accuracy of the UAV2-Lidar system has been investigated in our prior work35. For UGV-LMI and 
UGV-Ouster, we registered and georeferenced the point clouds by fusing the SBG IMU and GNSS position 
and heading data using a graph-based pose optimization approach as described in our prior work31, which 
results in a georeferencing accuracy of about 1-2 cm, where the repeatability of a single LMI laser line measure-
ment is reported by LMI Technologies by 12 micrometers (https://lmi3d.com/wp-content/uploads/2020/02/
DATASHEET_Gocator_2490_US_WEB.pdf) and the Ouster OS1 range precision is specified with 1 cm at a 
range from 1-20 m (https://data.ouster.io/downloads/datasheets/datasheet-revd-v2p0-os1.pdf).

LAI Reference Measurements.  We validated the LAI measurements from the SunScan with destructive measure-
ments. Figure 13 plots the LAI measured using SunScan and destructive measurements on similar dates, i.e., at most one 
day apart, to show the correlation between the two data types with the R2 of 0.82 and root mean square error (RMSE) of 
0.78. Where available, we report the LAI of the area where crops were sown; see the readme of md_SunScan for further 
details. The correlation plot indicates a strong agreement between destructive measurements and SunScan measurements.

However, the SunScan and destructive LAI measurements have some discrepancies, likely due to the fol-
lowing points. Firstly, the plots were heterogeneous, particularly in maize and soybeans, leading to a high var-
iance in the SunScan measurements and deviation between SunScan and destructive measurements. We took 
multiple repeated measurements in the plot with SunScan at different locations to fully capture the heteroge-
neity of the plot, but destructive measurements were taken only from one area per sample, which may not fully 
reflect the whole plot. We marked the location where each destructive measurement was taken in a shapefile 
md_DestructiveSHP for future LAI retrieval usage.

Secondly, SunScan measures LAI with PAR sensors and does not distinguish between green and brown vege-
tation, while destructive measurements only measure the green parts of leaves. This difference in measurements 
leads to higher SunScan measurements for the later developmental stages of wheat, both in single crop plots and 
intercrop plots, as the wheat senesces and sheds its lower leaves (heading and ripening).

Usage Notes
The MuST-C dataset can be used to estimate phenotypic traits, and here we illustrate this with an example use 
case for LAI estimation. Moreover, our dataset comprises data from multiple sensors, where we can obtain 
different phenotypic traits from each sensor using state-of-the-art methods. Here, we leverage RGB images for 
crop-weed segmentation, plant instance counting, and leaf detection, multispectral reflectance orthophotos for 
vegetation indices extraction, and point clouds for plant height and leaf angle estimation. While these methods 
leverage the strengths of each sensor, our dataset is aligned over time and across sensor modalities so that we can 
transform and merge these extracted traits from one sensor to another.

Fig. 10  Directory tree structure of our dataset. We provide our data in two alternative organizational structures 
for the user to choose from. Firstly, we categorized all data packages according to their data type at the top level, 
i.e., images for raw image data, point_clouds for 3D data points, raster_data for orthophotos, and LAI_biomass_
and_metadata for reference measurements and field data. Secondly, we provide an alternative organization of 
our data in the “plot-wise” directory for use cases that require plot-level analysis.
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LAI Estimation.  In our dataset, we measured the LAI values using a SunScan sensor and destructive sampling 
(Fig. 13). One of the use cases for this data set is to non-destructively derive LAI data from other sensor modal-
ities. We exemplify this approach in the derivation of LAI from UAV Lidar data using Beer’s Law36. We used ray 
tracing to derive the probability of a laser ray being absorbed within the canopy and linked this to the LAI of the 
crop. Figure 14 shows the result in comparison with the data from the SunScan sensor. Other potential methods 
include multi-view geometry approaches based on the images10 or direct modelling of the plant structure7.

Fig. 11  GCP locations of UAV1-RGB (green), UAV2-RGB (blue), UAV3-RGB (yellow), and UAV3-MS (red), 
for each data collection date where the GCPs are visible. The GCP locations in the orthophotos are mostly 
aligned across sensors and different collection dates.

Fig. 12  Point clouds of the potato plots (a) across different sensors and (b) over time. In (a), when the potatoes 
were just sown, we show the point clouds from UAV2-Lidar in red, UGV-LMI in yellow, UGV-Ouster in blue, 
and UAV1-RGB in green. The alignment in X and Y direction is almost perfect, with the undulation of the soil 
(75 cm row width) and the experiment tagging stick. Between the point clouds, there is a small discrepancy of 
less than 10 cm in the Z direction. In (b), we show the point clouds from UGV-LMI for the same potato plant 
across three dates (13.06., 21.06., and 21.08.) to show the alignment over time with our georeferenced sensor 
data. In (c), we show the point clouds of three maize plants from the front (along a row) and the side. The 
clouds have been generated from different sensor data, taken on the same day. The variations in density and 
distribution of points between sensors are shown here.
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Plant Counting.  In addition to LAI estimation, several phenotypic traits and auxiliary information can be 
extracted using deep learning methods. Firstly, from the RGB images (e.g., Fig. 15(a)), we can obtain the plant 
count of a given plot using panoptic segmentation37 methods. Figure 15(b)(c) shows the results of a panoptic seg-
mentation method16 trained on a labeled dataset9, on an RGB image from MuST-C’s UAV1-RGB. Qualitatively, 
the method can perform plant counting relatively well despite using weights trained on a different dataset.

Crop Leaves Extraction.  Several phenotypic traits and phenological development (expressed with the 
BBCH scale38) are related to the leaves of the crop, leaf length and width, and leaf angle. To assist in extracting 
these traits, we can first detect individual leaves of the crop. In Fig. 15(d), we show an example of instance seg-
mentation39, which includes segments of individual leaf instances.

Vegetation Indices.  Vegetation indices are useful for use cases such as LAI estimation14, vegetation classi-
fication40, biomass estimation41, and so on. We can extract these vegetation indices using the multispectral and 
RGB products of our dataset. As an example, from the multispectral data of UAV3-MS, we extracted vegetation 
indices such as NDVI42, NDRE43, EVI44, and OSAVI45, shown in Fig. 15(e).

Fig. 13  SunScan validation plot of LAI measured using SunScan against LAI measured with destructive 
measurements, with RMSE of 0.78 and R2 of 0.82. The error bars for the SunScan measurements indicate the 
minimum and maximum measurements.

Fig. 14  Example results of LAI from UAV2-Lidar data over several dates. We show the median and Mean 
Absolute Deviation (MAD) of the LAI estimated from UAV2-Lidar data and reference measurements from 
SunScan for maize (left) and sugar beet (right).
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Plant Height Extraction.  The plant heights can be extracted from all point clouds by approximating a 
ground surface and calculating the differences to the ground (see Fig. 15(f)). To provide height values on plot 
level, mostly the mean of points above the 95th percentile of all height values in the crop for each plot is used46.

Leaf Angle Estimation.  The orientation of the leaf surfaces of plants is often referred to as ‘leaf angle distribution’ 
and determines how the canopy intercepts light. It is a crucial parameter in crop modelling and breeding, as it influences 
photosynthesis, biomass accumulation, and water-use efficiency. While there is no commonly used sensor to measure the 
leaf angles in field environments, the leaf angle distribution can be estimated using the high-resolution point clouds from the 
UGV-based triangulation scanners7. Figure 15(g) shows the local surface orientation for the points of some sugar beet plants.

Data availability
As mentioned in the section on Data Records, our data is available for download at our data repository https://
doi.org/10.60507/FK2/OX9XTM34, which follows the nomencular conventions from Fig. 10.

Code availability
The custom Python code for loading the MuST-C dataset, processing the leaf area destructive measurements, 
converting multispectral orthophotos, and plotting the graphs in Figs. 8, 9, 13 is made publicly available at https://
github.com/PRBonn/MuST-C. We also provide a developer’s kit to process our dataset (e.g., to organize the data 
at the plot level) in the same GitHub repository.
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