001050780 001__ 1050780
001050780 005__ 20260116204419.0
001050780 0247_ $$2doi$$a10.3390/electrochem6010005
001050780 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-00504
001050780 037__ $$aFZJ-2026-00504
001050780 082__ $$a621.3
001050780 1001_ $$0P:(DE-Juel1)173936$$aRosen, Melanie$$b0
001050780 245__ $$aTape Casting of NASICON-Based Separators with High Conductivity for Na All-Solid-State Batteries
001050780 260__ $$aBasel$$bMDPI$$c2025
001050780 3367_ $$2DRIVER$$aarticle
001050780 3367_ $$2DataCite$$aOutput Types/Journal article
001050780 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768565917_21954
001050780 3367_ $$2BibTeX$$aARTICLE
001050780 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001050780 3367_ $$00$$2EndNote$$aJournal Article
001050780 520__ $$aSodium–ion batteries are emerging as strong competition to lithium–ion batteries in certain market sections. While these cells do not use critical raw materials, they still feature a liquid electrolyte with all its inherent safety issues, like high flammability and toxicity. Alternative concepts like oxide-ceramic-based all-solid-state batteries feature the highest possible safety while still maintaining competitive electrochemical performance. However, production technologies are still in their infancy, especially for Na all-solid-state batteries, and need to be urgently developed to enable solid-state-battery technology using only abundant raw materials. In this study, the additive-free production of freestanding, undoped NaSICON separators via tape-casting is demonstrated, having an extremely high total Na-ion conductivity of up to 2.44 mS·cm−1 at room temperature. Nevertheless, a strong influence of sample thickness on phase purity as well as electrochemical performance is uncovered. Additionally, the effect of self-coating of NaSICON during high-temperature treatment was evaluated as a function of thickness. While advantageous for increasing the stability against Na-metal anodes, detrimental consequences are identified when separator thickness is reduced to industrially relevant values and mitigation measures are postulated.
001050780 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001050780 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x1
001050780 536__ $$0G:(BMBF)13XP0183B$$aMiTemp - Mitteltemperatur-Natriumbatterien mit flüssiger Natriumanode und wässriger Iodkathode (13XP0183B)$$c13XP0183B$$x2
001050780 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001050780 7001_ $$0P:(DE-HGF)0$$aMahioui, Samir$$b1
001050780 7001_ $$0P:(DE-Juel1)194161$$aSchwab, Christian$$b2
001050780 7001_ $$0P:(DE-Juel1)210494$$aDück, Gerald$$b3$$ufzj
001050780 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b4$$eCorresponding author$$ufzj
001050780 773__ $$0PERI:(DE-600)3028307-3$$a10.3390/electrochem6010005$$gVol. 6, no. 1, p. 5 -$$n1$$p5 -$$tElectrochem$$v6$$x2673-3293$$y2025
001050780 8564_ $$uhttps://juser.fz-juelich.de/record/1050780/files/electrochem-06-00005-v2.pdf$$yOpenAccess
001050780 909CO $$ooai:juser.fz-juelich.de:1050780$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001050780 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173936$$aForschungszentrum Jülich$$b0$$kFZJ
001050780 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194161$$aForschungszentrum Jülich$$b2$$kFZJ
001050780 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)210494$$aForschungszentrum Jülich$$b3$$kFZJ
001050780 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b4$$kFZJ
001050780 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001050780 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
001050780 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
001050780 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001050780 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:57:21Z
001050780 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:57:21Z
001050780 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001050780 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T14:57:21Z
001050780 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-07
001050780 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-07
001050780 920__ $$lyes
001050780 9201_ $$0I:(DE-Juel1)IMD-2-20101013$$kIMD-2$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001050780 980__ $$ajournal
001050780 980__ $$aVDB
001050780 980__ $$aUNRESTRICTED
001050780 980__ $$aI:(DE-Juel1)IMD-2-20101013
001050780 9801_ $$aFullTexts