001050783 001__ 1050783
001050783 005__ 20260116204419.0
001050783 0247_ $$2doi$$a10.1093/mam/ozaf048.923
001050783 0247_ $$2ISSN$$a1079-8501
001050783 0247_ $$2ISSN$$a1431-9276
001050783 0247_ $$2ISSN$$a1435-8115
001050783 037__ $$aFZJ-2026-00507
001050783 082__ $$a500
001050783 1001_ $$0P:(DE-HGF)0$$aZheng, Hongkui$$b0
001050783 245__ $$aModulating Metal Support Interactions for Durable and Selective CO2 Hydrogenation Reaction: An Operando Transmission Electron Microscopy Study
001050783 260__ $$aOxford$$bOxford University Press$$c2025
001050783 3367_ $$2DRIVER$$aarticle
001050783 3367_ $$2DataCite$$aOutput Types/Journal article
001050783 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768572007_568
001050783 3367_ $$2BibTeX$$aARTICLE
001050783 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001050783 3367_ $$00$$2EndNote$$aJournal Article
001050783 520__ $$aCarbon dioxide (CO2) hydrogenation is a promising route to generate clean high-value fuels and chemicals, for example CO, CH4, CH3OH, and C2+ hydrocarbons. Heterogeneous metal-support catalysts have emerged as prime candidates for this reaction, effectively dissociating H2 to facilitate CO2 conversion. While considerable effort has focused on tailoring the size, morphology, and composition of both supports and metal nanoparticles, achieving high activity, selectivity, and stability remains a significant challenge. Crucially, metal-support interactions (MSI) are now recognized as playing a decisive role, as the interface provides active sites and oxygen vacancies that influence gas adsorption, activation, and product formation. Therefore, directly observing these dynamic MSI under realistic reaction conditions is essential for understanding catalytic mechanisms and designing advanced catalysts.While various in-situ techniques have been employed to probe CO2 hydrogenation, recent advances in MEMS-based sample carriers and corresponding transmission electron microscopy (TEM) holders, coupled with residual gas analysis, have enabled in-situ TEM studies of near-atmospheric pressure reactions. As TEM provides the opportunity to perform simultaneous high-resolution imaging, chemical composition mapping, and local electronic structure studies, in-situ TEM allows for real-time observation of MSI dynamics and correlation with reaction products, providing unprecedented insights into the catalytic processes.In this work, by comparing different types of metal-substrate interaction, we will uncouple the effect of substrate during CO2 hydrogenation. Our study would contribute to deepening the understanding of high temperature (co)electrolysis processes, leading to the design of high-performance electrode materials.
001050783 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001050783 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
001050783 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001050783 7001_ $$0P:(DE-Juel1)194731$$aChakraborty, Pritam K$$b1$$ufzj
001050783 7001_ $$0P:(DE-HGF)0$$aSpruit, Ronald$$b2
001050783 7001_ $$0P:(DE-HGF)0$$aPivak, Yevheniy$$b3
001050783 7001_ $$0P:(DE-HGF)0$$aSun, Hongyu$$b4
001050783 7001_ $$0P:(DE-Juel1)180432$$aBasak, Shibabrata$$b5$$eCorresponding author$$ufzj
001050783 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A$$b6$$ufzj
001050783 7001_ $$0P:(DE-HGF)0$$aGarza, Hugo Pérez$$b7
001050783 773__ $$0PERI:(DE-600)1481716-0$$a10.1093/mam/ozaf048.923$$gVol. 31, no. Supplement_1, p. ozaf048.923$$nSupplement_1$$pozaf048.923$$tMicroscopy and microanalysis$$v31$$x1079-8501$$y2025
001050783 909CO $$ooai:juser.fz-juelich.de:1050783$$pVDB
001050783 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aDENSolutions B.V.$$b0
001050783 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194731$$aForschungszentrum Jülich$$b1$$kFZJ
001050783 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)194731$$aRWTH Aachen$$b1$$kRWTH
001050783 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180432$$aForschungszentrum Jülich$$b5$$kFZJ
001050783 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b6$$kFZJ
001050783 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b6$$kRWTH
001050783 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001050783 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-17$$wger
001050783 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMICROSC MICROANAL : 2022$$d2024-12-17
001050783 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-17
001050783 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-17
001050783 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-17
001050783 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-17
001050783 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-17
001050783 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-17
001050783 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-17
001050783 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-17
001050783 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-17
001050783 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-17
001050783 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-17
001050783 920__ $$lyes
001050783 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001050783 980__ $$ajournal
001050783 980__ $$aVDB
001050783 980__ $$aI:(DE-Juel1)IET-1-20110218
001050783 980__ $$aUNRESTRICTED