001     1050783
005     20260116204419.0
024 7 _ |a 10.1093/mam/ozaf048.923
|2 doi
024 7 _ |a 1079-8501
|2 ISSN
024 7 _ |a 1431-9276
|2 ISSN
024 7 _ |a 1435-8115
|2 ISSN
037 _ _ |a FZJ-2026-00507
082 _ _ |a 500
100 1 _ |a Zheng, Hongkui
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Modulating Metal Support Interactions for Durable and Selective CO2 Hydrogenation Reaction: An Operando Transmission Electron Microscopy Study
260 _ _ |a Oxford
|c 2025
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1768572007_568
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Carbon dioxide (CO2) hydrogenation is a promising route to generate clean high-value fuels and chemicals, for example CO, CH4, CH3OH, and C2+ hydrocarbons. Heterogeneous metal-support catalysts have emerged as prime candidates for this reaction, effectively dissociating H2 to facilitate CO2 conversion. While considerable effort has focused on tailoring the size, morphology, and composition of both supports and metal nanoparticles, achieving high activity, selectivity, and stability remains a significant challenge. Crucially, metal-support interactions (MSI) are now recognized as playing a decisive role, as the interface provides active sites and oxygen vacancies that influence gas adsorption, activation, and product formation. Therefore, directly observing these dynamic MSI under realistic reaction conditions is essential for understanding catalytic mechanisms and designing advanced catalysts.While various in-situ techniques have been employed to probe CO2 hydrogenation, recent advances in MEMS-based sample carriers and corresponding transmission electron microscopy (TEM) holders, coupled with residual gas analysis, have enabled in-situ TEM studies of near-atmospheric pressure reactions. As TEM provides the opportunity to perform simultaneous high-resolution imaging, chemical composition mapping, and local electronic structure studies, in-situ TEM allows for real-time observation of MSI dynamics and correlation with reaction products, providing unprecedented insights into the catalytic processes.In this work, by comparing different types of metal-substrate interaction, we will uncouple the effect of substrate during CO2 hydrogenation. Our study would contribute to deepening the understanding of high temperature (co)electrolysis processes, leading to the design of high-performance electrode materials.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
536 _ _ |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
|0 G:(DE-Juel1)HITEC-20170406
|c HITEC-20170406
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Chakraborty, Pritam K
|0 P:(DE-Juel1)194731
|b 1
|u fzj
700 1 _ |a Spruit, Ronald
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Pivak, Yevheniy
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sun, Hongyu
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Basak, Shibabrata
|0 P:(DE-Juel1)180432
|b 5
|e Corresponding author
|u fzj
700 1 _ |a Eichel, Rüdiger-A
|0 P:(DE-Juel1)156123
|b 6
|u fzj
700 1 _ |a Garza, Hugo Pérez
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1093/mam/ozaf048.923
|g Vol. 31, no. Supplement_1, p. ozaf048.923
|0 PERI:(DE-600)1481716-0
|n Supplement_1
|p ozaf048.923
|t Microscopy and microanalysis
|v 31
|y 2025
|x 1079-8501
909 C O |o oai:juser.fz-juelich.de:1050783
|p VDB
910 1 _ |a DENSolutions B.V.
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)194731
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)194731
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)180432
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-17
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MICROSC MICROANAL : 2022
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-17
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-17
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21