001050786 001__ 1050786
001050786 005__ 20260116204419.0
001050786 037__ $$aFZJ-2026-00509
001050786 1001_ $$0P:(DE-Juel1)180432$$aBasak, Shibabrata$$b0$$eCorresponding author$$ufzj
001050786 1112_ $$aFrom operando electron microscopy images to atomistic models: Machine Learning assisted analysis in the age of big data$$cBerlin$$d2025-07-02 - 2025-07-04$$wGermany
001050786 245__ $$aVisualizing Electrochemical Processes in Energy Materials using Multimodal In-situ Electron Microscopy Approach
001050786 260__ $$c2025
001050786 3367_ $$033$$2EndNote$$aConference Paper
001050786 3367_ $$2DataCite$$aOther
001050786 3367_ $$2BibTeX$$aINPROCEEDINGS
001050786 3367_ $$2DRIVER$$aconferenceObject
001050786 3367_ $$2ORCID$$aLECTURE_SPEECH
001050786 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1768571934_1581$$xInvited
001050786 520__ $$aThe development of next-generation electrochemical storage and conversion devices with betterperformance and longevity requires understanding the electrochemical processes at the nanoscale.Our group specializes in utilizing in-situ electron microscopy in a multimodal approach to unravelthe dynamic processes governing the performance of energy materials, such as batteries, solidoxide fuel cells, and electrolyzers. This presentation highlights our in-situ electron microscopycapabilities, including gas and liquid phase experiments, to understand dynamics at solid-solid,solid-gas, and solid-liquid interfaces.Focusing on solid-solid interfaces, we examine lithiation/delithiation dynamics incoated and uncoated silicon particles. These insights help in understanding processes inall-solid-state batteries, and developing a screening method to screen coating materials andunderstanding their desired architecture.We study gas-solid interactions to understand catalyst and fuel electrode behavior underoperational conditions. These studies provide insights into catalyst exsolution mechanismsin solid oxide cell electrodes as well as the behavior of catalysts during CO2 conversionreactions. Coupled with focused ion beam – scanning electron microscopy (FIB-SEM)tomography, these findings help us understand long-term operational impacts on materialsand provide insights into designing next-generation electrodes.We are pioneering in-situ liquid phase TEM studies to understand solid-liquid interactions during electrochemical processes. We have developed a novel liquidpurging method that enables high-resolution imaging and analytical studies within a liquidflow cell. This method allows for dynamic control of liquid thickness, enabling the studyof electrochemical processes under realistic conditions. We are utilizing this to study zincbattery dynamics to develop better charge-discharge routines and suitable electrolyteadditives to improve battery performance.Live processing of in-situ data can help in interpreting electrochemical phenomena inmuch more depth. Focused on this, we are developing processing routes to obtain fastinterpretation of the generated images and diffraction datasets. We are currently striving tocouple theoretical predictions into live processing and are working towards automatinginstruments, allowing for longer duration experiments, increased throughput, and improvedreproducibility.
001050786 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001050786 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x1
001050786 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
001050786 7001_ $$0P:(DE-Juel1)194731$$aChakraborty, Pritam$$b1$$ufzj
001050786 7001_ $$0P:(DE-Juel1)180853$$aPark, Junbeom$$b2$$ufzj
001050786 7001_ $$0P:(DE-Juel1)161579$$aJodat, Eva$$b3$$ufzj
001050786 7001_ $$0P:(DE-Juel1)191359$$aKarl, André$$b4$$ufzj
001050786 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b5$$ufzj
001050786 909CO $$ooai:juser.fz-juelich.de:1050786$$pVDB
001050786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180432$$aForschungszentrum Jülich$$b0$$kFZJ
001050786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194731$$aForschungszentrum Jülich$$b1$$kFZJ
001050786 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)194731$$aRWTH Aachen$$b1$$kRWTH
001050786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180853$$aForschungszentrum Jülich$$b2$$kFZJ
001050786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161579$$aForschungszentrum Jülich$$b3$$kFZJ
001050786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191359$$aForschungszentrum Jülich$$b4$$kFZJ
001050786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b5$$kFZJ
001050786 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b5$$kRWTH
001050786 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001050786 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
001050786 920__ $$lyes
001050786 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001050786 980__ $$aconf
001050786 980__ $$aVDB
001050786 980__ $$aI:(DE-Juel1)IET-1-20110218
001050786 980__ $$aUNRESTRICTED