001050787 001__ 1050787
001050787 005__ 20260116204419.0
001050787 037__ $$aFZJ-2026-00510
001050787 1001_ $$0P:(DE-Juel1)180432$$aBasak, Shibabrata$$b0$$eCorresponding author$$ufzj
001050787 1112_ $$aMicroscopy Conference 2025$$cKarlsruhe$$d2025-08-31 - 2025-09-04$$gMC2025$$wGermany
001050787 245__ $$aBridging the Nanoscale Gap: Multimodal Electron Microscopyfor Advancing Electrolyzer Technologies
001050787 260__ $$c2025
001050787 3367_ $$033$$2EndNote$$aConference Paper
001050787 3367_ $$2BibTeX$$aINPROCEEDINGS
001050787 3367_ $$2DRIVER$$aconferenceObject
001050787 3367_ $$2ORCID$$aCONFERENCE_POSTER
001050787 3367_ $$2DataCite$$aOutput Types/Conference Poster
001050787 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1768572214_568$$xAfter Call
001050787 520__ $$aThe transition to a sustainable energy future is inseparably linked to the development of efficient and reliable hydrogen production technologies. Electrolysis, encompassing both low-temperature (PEM/AEM) and high-temperature (SOFC/SOEC) approaches, holds immense promise. However, a significant hurdle remains: a comprehensive understanding of the complex electrochemical processes at the nanoscale and how that translates to macro-scale performance and durability. This presentation shows how advanced electron microscopy can address this challenge.Overall our research aims to correlate fundamental nanoscale mechanisms with device performance in both low- and high-temperature electrolysis by developing and implementing a comprehensive multimodal electron microscopy strategy. We emphasize visualizing nanoscale dynamics using in-situ transmission electron microscopy (TEM) and correlating these observations with the microstructural changes in lab or large-scale cells during long-term operation via a multimodal approach. Specifically, the low- and high-temperature electrolysis present distinct microscopy challenges. Beam-sensitive AEM and PEM electrolytes and catalysts necessitate low-dose TEM and cryo-sample preparation. Maintaining critical hydration states during imaging is crucial for accurate degradation mechanism analysis. Furthermore, the limitations of single-chamber MEMS-based in-situ TEM cells for gas/liquid phase reactions require careful consideration of electrochemical processes to maximize the information gained. Finally, the limited field of view and thin sample requirements of TEM necessitate careful consideration of broader relevance.Thus, we combine laser scanning microscopy (LSM) for large-scale context, (cryo) plasma FIB for precise TEM sample preparation or obtaining high-resolution 3D information to construct a comprehensive picture of the material's structure and behavior. Then, employ well though in-situ TEM investigation in (environmental) TEM to obtain necessary nanoscale process information.    This presentation will showcase unique degradation processes observed in PEM electrolysis and the nano-exsolution process and its long-term stability in high-temperature electrolysis. These nanoscale insights are crucial for the rational design and optimization of next-generation electrolyzers, accelerating the transition to a hydrogen-based economy.
001050787 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001050787 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
001050787 7001_ $$0P:(DE-Juel1)194731$$aChakraborty, Pritam$$b1$$ufzj
001050787 7001_ $$0P:(DE-Juel1)184377$$aPoc, Jean-Pierre$$b2$$ufzj
001050787 7001_ $$0P:(DE-Juel1)161579$$aJodat, Eva$$b3$$ufzj
001050787 7001_ $$0P:(DE-Juel1)191359$$aKarl, André$$b4$$ufzj
001050787 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b5$$ufzj
001050787 909CO $$ooai:juser.fz-juelich.de:1050787$$pVDB
001050787 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180432$$aForschungszentrum Jülich$$b0$$kFZJ
001050787 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194731$$aForschungszentrum Jülich$$b1$$kFZJ
001050787 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)194731$$aRWTH Aachen$$b1$$kRWTH
001050787 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184377$$aForschungszentrum Jülich$$b2$$kFZJ
001050787 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)184377$$aRWTH Aachen$$b2$$kRWTH
001050787 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161579$$aForschungszentrum Jülich$$b3$$kFZJ
001050787 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191359$$aForschungszentrum Jülich$$b4$$kFZJ
001050787 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b5$$kFZJ
001050787 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b5$$kRWTH
001050787 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001050787 920__ $$lyes
001050787 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001050787 980__ $$aposter
001050787 980__ $$aVDB
001050787 980__ $$aI:(DE-Juel1)IET-1-20110218
001050787 980__ $$aUNRESTRICTED