001     1050787
005     20260116204419.0
037 _ _ |a FZJ-2026-00510
100 1 _ |a Basak, Shibabrata
|0 P:(DE-Juel1)180432
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Microscopy Conference 2025
|g MC2025
|c Karlsruhe
|d 2025-08-31 - 2025-09-04
|w Germany
245 _ _ |a Bridging the Nanoscale Gap: Multimodal Electron Microscopyfor Advancing Electrolyzer Technologies
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1768572214_568
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a The transition to a sustainable energy future is inseparably linked to the development of efficient and reliable hydrogen production technologies. Electrolysis, encompassing both low-temperature (PEM/AEM) and high-temperature (SOFC/SOEC) approaches, holds immense promise. However, a significant hurdle remains: a comprehensive understanding of the complex electrochemical processes at the nanoscale and how that translates to macro-scale performance and durability. This presentation shows how advanced electron microscopy can address this challenge.Overall our research aims to correlate fundamental nanoscale mechanisms with device performance in both low- and high-temperature electrolysis by developing and implementing a comprehensive multimodal electron microscopy strategy. We emphasize visualizing nanoscale dynamics using in-situ transmission electron microscopy (TEM) and correlating these observations with the microstructural changes in lab or large-scale cells during long-term operation via a multimodal approach. Specifically, the low- and high-temperature electrolysis present distinct microscopy challenges. Beam-sensitive AEM and PEM electrolytes and catalysts necessitate low-dose TEM and cryo-sample preparation. Maintaining critical hydration states during imaging is crucial for accurate degradation mechanism analysis. Furthermore, the limitations of single-chamber MEMS-based in-situ TEM cells for gas/liquid phase reactions require careful consideration of electrochemical processes to maximize the information gained. Finally, the limited field of view and thin sample requirements of TEM necessitate careful consideration of broader relevance.Thus, we combine laser scanning microscopy (LSM) for large-scale context, (cryo) plasma FIB for precise TEM sample preparation or obtaining high-resolution 3D information to construct a comprehensive picture of the material's structure and behavior. Then, employ well though in-situ TEM investigation in (environmental) TEM to obtain necessary nanoscale process information. This presentation will showcase unique degradation processes observed in PEM electrolysis and the nano-exsolution process and its long-term stability in high-temperature electrolysis. These nanoscale insights are crucial for the rational design and optimization of next-generation electrolyzers, accelerating the transition to a hydrogen-based economy.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
536 _ _ |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
|0 G:(DE-Juel1)HITEC-20170406
|c HITEC-20170406
|x 1
700 1 _ |a Chakraborty, Pritam
|0 P:(DE-Juel1)194731
|b 1
|u fzj
700 1 _ |a Poc, Jean-Pierre
|0 P:(DE-Juel1)184377
|b 2
|u fzj
700 1 _ |a Jodat, Eva
|0 P:(DE-Juel1)161579
|b 3
|u fzj
700 1 _ |a Karl, André
|0 P:(DE-Juel1)191359
|b 4
|u fzj
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 5
|u fzj
909 C O |o oai:juser.fz-juelich.de:1050787
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180432
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)194731
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)194731
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)184377
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)184377
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161579
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)191359
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21