001     1050789
005     20260116204419.0
037 _ _ |a FZJ-2026-00511
100 1 _ |a Gorelik, Tatiana
|0 P:(DE-Juel1)206622
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Microscopy Conference 2025
|g MC 2025
|c Karlsruhe
|d 2025-08-31 - 2025-09-04
|w Germany
245 _ _ |a Can ePDF Detect Water in Silicon Nitride Liquid Cells?
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1768573724_24942
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Recent developments in in situ and environmental TEM have significantly advanced our ability to study dynamic processes at the nanoscale. Innovations in liquid and gas cell TEM have enabled real-time imaging of chemical reactions, material transformations, and biological processes under realistic conditions. Many of these processes are inherently heterogeneous and involve precipitation or crystallization. The most straightforward method for detecting early crystallization states in a liquid phase is the analysis of the electron Pair Distribution Function (ePDF).Amorphous silicon nitride is one of the most widely used materials for in situ TEM liquid cells. As a result, the contribution of the membrane signal is inevitably present in the diffraction data of the sample. It is therefore crucial to analyze and understand the contributions of both the Si3N4 membrane and water as a solvent to accurately assign evolving structural features and distinguish them from the signal of the reaction species.Detecting water in the presence of Si3N4 is not a trivial task, as most interatomic distances in their respective Pair Distribution Functions overlap. Consequently, rather than tracing the appearance of additional peaks, we must analyse the distribution of intensities, which are generally less reliable in ePDF due to multiple scattering.Here, we present our results on the ePDF analysis of water-filled Si3N4 chips, demonstrating the information that can be extracted from ePDF data and discussing the limitations of the procedure.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
700 1 _ |a Ummethala, Govind
|0 P:(DE-Juel1)201578
|b 1
|u fzj
700 1 _ |a Tavabi, Amir Hossein
|0 P:(DE-Juel1)157886
|b 2
|u fzj
700 1 _ |a Dunin-Borkowski, Rafal
|0 P:(DE-Juel1)144121
|b 3
|u fzj
700 1 _ |a Basak, Shibabrata
|0 P:(DE-Juel1)180432
|b 4
|e Corresponding author
|u fzj
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 5
|u fzj
909 C O |o oai:juser.fz-juelich.de:1050789
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)206622
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)201578
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)157886
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144121
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)180432
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 1
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21