001     1051586
005     20260116204430.0
037 _ _ |a FZJ-2026-00514
100 1 _ |a Chakraborty, Pritam
|0 P:(DE-Juel1)194731
|b 0
|e First author
|u fzj
111 2 _ |a Microscopy Conference 2025
|g MC 2025
|c Karlsruhe
|d 2025-08-31 - 2025-09-04
|w Germany
245 _ _ |a Real-time observations of Fe-Ni exsolution in perovskites: Implications for high-performance energy conversion applications
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1768572266_3705
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a The global push for clean energy has intensified research on solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs), collectively termed solid oxide cells (SOCs). The fuel electrode, functioning as the anode in SOFCs and the cathode in SOECs, is crucial for fuel interactions. Despite the widespread use of Ni/yttria-stabilized zirconia (Ni/YSZ) cermet due to its affordability and mechanical strength, its long-term performance is hindered by redox instability, Ni agglomeration, coking, and sulfur poisoning.Perovskite-based alternatives, particularly the double perovskite Sr2FeMoO6-δ (SFM), have gained attention due to their electrochemical stability, symmetrical functionality, and mixed electronic-ionic conductivity (MIEC). A key advantage of SFM is its in situ exsolution behavior, where B/B′-site cations—especially when doped with transition metals like Ni, Co, or Mn—undergo controlled exsolution upon reduction, which eliminate the effects of agglomeration and coking.Sr2FeMo0.65Ni0.35O6−δ (SFM-Ni) has demonstrated superior performance due to Ni’s high catalytic activity. However, the mechanism underlying the in situ formation of FeNi3 nano-exsolutions remains poorly understood. Elucidating this process is critical for optimizing material design and enhancing SOC performance.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
536 _ _ |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
|0 G:(DE-Juel1)HITEC-20170406
|c HITEC-20170406
|x 1
700 1 _ |a Wolf
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Vibhu, Vaibhav
|0 P:(DE-Juel1)169490
|b 2
|u fzj
700 1 _ |a Jodat, Eva
|0 P:(DE-Juel1)161579
|b 3
|u fzj
700 1 _ |a Karl, André
|0 P:(DE-Juel1)191359
|b 4
|u fzj
700 1 _ |a Basak, Shibabrata
|0 P:(DE-Juel1)180432
|b 5
|e Corresponding author
|u fzj
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 6
|u fzj
909 C O |o oai:juser.fz-juelich.de:1051586
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)194731
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)194731
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169490
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161579
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)191359
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)180432
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21