001051591 001__ 1051591
001051591 005__ 20260116204430.0
001051591 0247_ $$2doi$$a10.1038/s41594-025-01721-3
001051591 0247_ $$2ISSN$$a1545-9993
001051591 0247_ $$2ISSN$$a1072-8368
001051591 0247_ $$2ISSN$$a1545-9985
001051591 0247_ $$2ISSN$$a2331-365X
001051591 037__ $$aFZJ-2026-00517
001051591 082__ $$a570
001051591 1001_ $$0P:(DE-Juel1)194880$$aVercellino, Irene$$b0$$eCorresponding author
001051591 245__ $$aAuthor Correction: SCAF1 drives the compositional diversity of mammalian respirasomes
001051591 260__ $$aLondon [u.a.]$$bNature Publishing Group$$c2025
001051591 3367_ $$2DRIVER$$aarticle
001051591 3367_ $$2DataCite$$aOutput Types/Journal article
001051591 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768566095_24992
001051591 3367_ $$2BibTeX$$aARTICLE
001051591 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001051591 3367_ $$00$$2EndNote$$aJournal Article
001051591 520__ $$aSupercomplexes of the respiratory chain are established constituents of the oxidative phosphorylation system, but their role in mammalian metabolism has been hotly debated. Although recent studies have shown that different tissues/organs are equipped with specific sets of supercomplexes, depending on their metabolic needs, the notion that supercomplexes have a role in the regulation of metabolism has been challenged. However, irrespective of the mechanistic conclusions, the composition of various high molecular weight supercomplexes remains uncertain. Here, using cryogenic electron microscopy, we demonstrate that mammalian (mouse) tissues contain three defined types of ‘respirasome’, supercomplexes made of CI, CIII2 and CIV. The stoichiometry and position of CIV differs in the three respirasomes, of which only one contains the supercomplex-associated factor SCAF1, whose involvement in respirasome formation has long been contended. Our structures confirm that the ‘canonical’ respirasome (the C-respirasome, CICIII2CIV) does not contain SCAF1, which is instead associated to a different respirasome (the CS-respirasome), containing a second copy of CIV. We also identify an alternative respirasome (A-respirasome), with CIV bound to the ‘back’ of CI, instead of the ‘toe’. This structural characterization of mouse mitochondrial supercomplexes allows us to hypothesize a mechanistic basis for their specific role in different metabolic conditions.
001051591 536__ $$0G:(DE-HGF)POF4-5352$$a5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001051591 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x1
001051591 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001051591 7001_ $$00000-0002-0977-7989$$aSazanov, Leonid A.$$b1
001051591 773__ $$0PERI:(DE-600)2131437-8$$a10.1038/s41594-025-01721-3$$gVol. 32, no. 11, p. 2371 - 2371$$n11$$p2371 - 2371$$tNature structural & molecular biology$$v32$$x1545-9993$$y2025
001051591 8564_ $$uhttps://juser.fz-juelich.de/record/1051591/files/SCAF1%20drives%20the%20compositional%20diversity-%20corrected%20-%20Vercellino.pdf$$yRestricted
001051591 909CO $$ooai:juser.fz-juelich.de:1051591$$pVDB
001051591 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194880$$aForschungszentrum Jülich$$b0$$kFZJ
001051591 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5352$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001051591 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
001051591 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-02$$wger
001051591 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2025-01-02$$wger
001051591 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT STRUCT MOL BIOL : 2022$$d2025-01-02
001051591 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001051591 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001051591 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-02
001051591 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-02
001051591 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001051591 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
001051591 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
001051591 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
001051591 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-02
001051591 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
001051591 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001051591 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT STRUCT MOL BIOL : 2022$$d2025-01-02
001051591 920__ $$lyes
001051591 9201_ $$0I:(DE-Juel1)ER-C-3-20170113$$kER-C-3$$lStrukturbiologie$$x0
001051591 980__ $$ajournal
001051591 980__ $$aVDB
001051591 980__ $$aI:(DE-Juel1)ER-C-3-20170113
001051591 980__ $$aUNRESTRICTED