001051608 001__ 1051608
001051608 005__ 20260116204431.0
001051608 0247_ $$2doi$$a10.1016/j.egyai.2025.100623
001051608 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-00531
001051608 037__ $$aFZJ-2026-00531
001051608 082__ $$a624
001051608 1001_ $$0P:(DE-Juel1)198986$$aRaman, K. Ashoke$$b0$$eCorresponding author
001051608 245__ $$aEvaluating activation strategies and their stability on PEM water electrolyzers using machine learning
001051608 260__ $$aAmsterdam$$bElsevier ScienceDirect$$c2025
001051608 3367_ $$2DRIVER$$aarticle
001051608 3367_ $$2DataCite$$aOutput Types/Journal article
001051608 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768572647_30552
001051608 3367_ $$2BibTeX$$aARTICLE
001051608 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001051608 3367_ $$00$$2EndNote$$aJournal Article
001051608 520__ $$aPre-treatment of the proton exchange membrane water electrolyzers is a crucial procedure performed prior to its regular operation. These procedures help in catalyst activation and membrane saturation, thereby, ensuring its optimal performance. In this study, we use machine learning to investigate the impact of three distinct activation procedures on the cell performance and stability. The data set necessary to develop the surrogate models was obtained from a lab scale PEM electrolyzer cell. After evaluating the performance of the three tested models and validating them with experimental data, extreme gradient boosting is selected as the to perform parametric analysis. The modeling predictions reveal that the activation procedures mainly impact the ohmic resistance at the beginning of the cell life. These observations were further corroborated using through sensitivity analysis performed through an explainable artificial intelligence technique. Furthermore, data-driven time-series forecasting analysis to predict cell stability for different activation procedures showed a good comparison between experimental data and model predictions
001051608 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001051608 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001051608 7001_ $$0P:(DE-Juel1)190997$$aWolf, Niklas L.$$b1$$ufzj
001051608 7001_ $$0P:(DE-Juel1)196699$$aJaved, Ali$$b2$$ufzj
001051608 7001_ $$0P:(DE-Juel1)194150$$aKaryofylli, Violeta$$b3$$ufzj
001051608 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b4$$ufzj
001051608 7001_ $$0P:(DE-Juel1)191359$$aKarl, André$$b5$$ufzj
001051608 7001_ $$0P:(DE-Juel1)161579$$aJodat, Eva$$b6$$ufzj
001051608 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b7$$ufzj
001051608 773__ $$0PERI:(DE-600)3017958-0$$a10.1016/j.egyai.2025.100623$$gVol. 22, p. 100623 -$$p100623$$tEnergy and AI$$v22$$x2666-5468$$y2025
001051608 8564_ $$uhttps://juser.fz-juelich.de/record/1051608/files/1-s2.0-S2666546825001557-main.pdf$$yOpenAccess
001051608 909CO $$ooai:juser.fz-juelich.de:1051608$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001051608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)198986$$aForschungszentrum Jülich$$b0$$kFZJ
001051608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190997$$aForschungszentrum Jülich$$b1$$kFZJ
001051608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196699$$aForschungszentrum Jülich$$b2$$kFZJ
001051608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194150$$aForschungszentrum Jülich$$b3$$kFZJ
001051608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b4$$kFZJ
001051608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191359$$aForschungszentrum Jülich$$b5$$kFZJ
001051608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161579$$aForschungszentrum Jülich$$b6$$kFZJ
001051608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b7$$kFZJ
001051608 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b7$$kRWTH
001051608 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001051608 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-06
001051608 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001051608 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T08:55:10Z
001051608 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-06
001051608 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T08:55:10Z
001051608 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-06
001051608 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001051608 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T08:55:10Z
001051608 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-06
001051608 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-06
001051608 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-06
001051608 920__ $$lyes
001051608 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001051608 980__ $$ajournal
001051608 980__ $$aVDB
001051608 980__ $$aUNRESTRICTED
001051608 980__ $$aI:(DE-Juel1)IET-1-20110218
001051608 9801_ $$aFullTexts