001     1051608
005     20260116204431.0
024 7 _ |a 10.1016/j.egyai.2025.100623
|2 doi
024 7 _ |a 10.34734/FZJ-2026-00531
|2 datacite_doi
037 _ _ |a FZJ-2026-00531
082 _ _ |a 624
100 1 _ |a Raman, K. Ashoke
|0 P:(DE-Juel1)198986
|b 0
|e Corresponding author
245 _ _ |a Evaluating activation strategies and their stability on PEM water electrolyzers using machine learning
260 _ _ |a Amsterdam
|c 2025
|b Elsevier ScienceDirect
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1768572647_30552
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Pre-treatment of the proton exchange membrane water electrolyzers is a crucial procedure performed prior to its regular operation. These procedures help in catalyst activation and membrane saturation, thereby, ensuring its optimal performance. In this study, we use machine learning to investigate the impact of three distinct activation procedures on the cell performance and stability. The data set necessary to develop the surrogate models was obtained from a lab scale PEM electrolyzer cell. After evaluating the performance of the three tested models and validating them with experimental data, extreme gradient boosting is selected as the to perform parametric analysis. The modeling predictions reveal that the activation procedures mainly impact the ohmic resistance at the beginning of the cell life. These observations were further corroborated using through sensitivity analysis performed through an explainable artificial intelligence technique. Furthermore, data-driven time-series forecasting analysis to predict cell stability for different activation procedures showed a good comparison between experimental data and model predictions
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wolf, Niklas L.
|0 P:(DE-Juel1)190997
|b 1
|u fzj
700 1 _ |a Javed, Ali
|0 P:(DE-Juel1)196699
|b 2
|u fzj
700 1 _ |a Karyofylli, Violeta
|0 P:(DE-Juel1)194150
|b 3
|u fzj
700 1 _ |a Kungl, Hans
|0 P:(DE-Juel1)157700
|b 4
|u fzj
700 1 _ |a Karl, André
|0 P:(DE-Juel1)191359
|b 5
|u fzj
700 1 _ |a Jodat, Eva
|0 P:(DE-Juel1)161579
|b 6
|u fzj
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 7
|u fzj
773 _ _ |a 10.1016/j.egyai.2025.100623
|g Vol. 22, p. 100623 -
|0 PERI:(DE-600)3017958-0
|p 100623
|t Energy and AI
|v 22
|y 2025
|x 2666-5468
856 4 _ |u https://juser.fz-juelich.de/record/1051608/files/1-s2.0-S2666546825001557-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1051608
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)198986
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)190997
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)196699
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)194150
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)157700
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)191359
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)161579
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 7
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-06
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:55:10Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:55:10Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-06
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:55:10Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-06
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-06
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21