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G R A P H I C A L  A B S T R A C T

H I G H L I G H T S

Introduced MEA activation as a feature in data-driven modeling of PEMEC.
Combined data-driven models with SHAP for ranking MEA activation procedures.
On the short run, in-situ/water 90 ◦C activation strategy showcases better performance.
The LSTM model shows a good comparison with experimental data for cell stability .
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 A B S T R A C T

Pre-treatment of the proton exchange membrane water electrolyzers is a crucial procedure performed prior to 
its regular operation. These procedures help in catalyst activation and membrane saturation, thereby, ensuring 
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its optimal performance. In this study, we use machine learning to investigate the impact of three distinct 
activation procedures on the cell performance and stability. The data set necessary to develop the surrogate 
models was obtained from a lab scale PEM electrolyzer cell. After evaluating the performance of the three 
tested models and validating them with experimental data, extreme gradient boosting is selected as the to 
perform parametric analysis. The modeling predictions reveal that the activation procedures mainly impact 
the ohmic resistance at the beginning of the cell life. These observations were further corroborated using 
through sensitivity analysis performed through an explainable artificial intelligence technique. Furthermore, 
data-driven time-series forecasting analysis to predict cell stability for different activation procedures showed 
a good comparison between experimental data and model predictions.
1. Introduction

Decarbonizing the energy landscape is vital not only for environ-
mental preservation but also for long-term economic stability. This 
imperative has led to global efforts in the pursuit of green energy 
technologies [1]. In this endeavor, proton exchange membrane (PEM) 
water electrolysis has emerged as a leading technology for producing 
green hydrogen. PEM electrolyzers produce high purity hydrogen, op-
erate at high current densities, and their modular design facilitates 
integration with existing transport and power grid infrastructure [2]. 
The central unit of these systems is the membrane electrode assem-
bly (MEA), whose core functionalities include facilitating the electro-
chemical water splitting reactions, separation of gaseous products, and 
enabling proton and electron transport. As the critical electrochemical 
and transport processes occur in the MEA, it dictates the efficiency 
and long-term operational life of the cell. To improve the system’s 
stability, reproducibility and performance before regular operation, the 
MEA is subjected to activation procedures during which current or 
thermal protocols are applied. These procedures [3] are also important 
in preventing accelerated degradation.

Before being deployed, PEMECs undergo activation procedures that 
enhance their performance. The duration of these activation procedures 
can range from less than an hour to over 20 h, even for identical 
materials. Understanding why these activation processes enhance the 
performance of PEM based electrochemical systems is both impor-
tant and intriguing. During the manufacturing process of membranes, 
cations such as Fe3+, Ni2+ and Cr2+ may contaminate the membrane 
and inhibit cell performance [4]. They do this by attacking the poly-
mer bands of the membrane, resulting in mechanical and chemical 
destabilization. Some of these also react with protons to block and 
decrease protonic conductivity. The membrane is also exposed to dif-
ferent temperature and humidity conditions during its manufacturing 
process. Both these factors influence the water uptake of the membrane, 
thereby, causing varying swelling behaviors and changes in structural 
morphology, which in turn influence the proton conductivity, before 
regular cell operation [5,6]. Some of the catalyst particles are covered 
with oxide impurities or may contain solvents, used to prepare the 
catalyst paste, filling in the pores of the carbon paper. These factors 
effectively reduce the available active electrochemical surface area and 
result in poor cell performance. As such, activation procedures [7,
8] help in optimizing cell start-up by activating the catalyst layer, 
improving membrane water saturation and through the removal of 
impurities.

Although conditioning procedures for PEMECs are well established 
[3], comparatively few comprehensive studies have investigated their 
effects relative to PEMFCs. A pre-conditioning procedure, in which 
the cell was subjected to a constant current density for 24 h was 
carried out to improve membrane hydration and stabilize the oxidation 
state of catalysts [9]. To standardize testing protocols and enable 
reliable comparison of PEM water electrolyzers across five laboratories, 
identical test cells, materials and operating protocols were used. For a 
given operating temperature and flow rate, a pre-conditioning protocol 
was carried out until the variation in current density was less than 
1%. Across the different laboratories, a low maximum deviation in 
2 
cell voltage was observed for different operating temperatures. Elec-
trochemical characterization and in-situ visualization revealed that 
conditioning procedures increased the number of reaction sites [10]. 
Electrochemical impedance spectra (EIS) measurements revealed that 
both ohmic and overpotential losses decreased after conditioning. More 
recently, the impact of ex-situ and two different in-situ conditioning 
procedures was investigated to evaluate their effect on short-term cell 
performance [11]. While experiments provide critical information on 
the impact of conditioning strategies through electrochemical charac-
terization techniques, there has been a recent shift towards integrating 
data-driven models with experimental data. To scale-up these systems 
for commercial utilization and to perform real-time monitoring, data-
driven models have emerged as an essential tool for enabling predictive 
analytics, control, and optimization, thereby bridging the gap between 
laboratory-scale experimentation and industrial deployment [12–14].

In the domain of PEMECs, machine learning has been predomi-
nantly deployed to screen electrocatalysts [15–17]. Unlike PEMFCs, 
where substantial work [18] has been conducted on applying data-
driven models for performance prediction and system-level optimiza-
tion across various scales, similar efforts for PEMECs remain in their 
early stages of development [19,20]. Images obtained from X-ray based 
tomography of the anode PTL of PEMEC were used as training data 
to develop a machine model that predicted the oxygen content in the 
PTL [21]. The k-nearest neighbors (KNN) and decision tree regression 
models were used to optimize the design of PEMECs by focusing on 
selecting the best flow-field pattern which maximizes hydrogen pro-
duction efficiency [22]. By using a combination of datasets generated 
from in-house experiments and literature, the authors demonstrated for 
the first time a data-driven framework for efficient hardware selection 
(flow field, catalyst type, membrane type, number of cells) for PEM 
water electrolyzers. Subsequently, design parameters were proposed 
for PEM electrolyzers with large scale hydrogen production rates rang-
ing from 50–300 mL/min. A database consisting of data from 789 
experiments extracted from 30 publications in the last 10 years was 
generated to find the most critical parameters influencing the perfor-
mance of PEMECs [23]. By using a combination of ML based methods 
such as SHAP, KNN and Bayesian optimization, operating temperature, 
catalyst loading, ionomer content, support materials for anode and 
cathode, and appropriate pore structure of PTL were prescribed as 
the critical parameters. Similar data-driven cell design optimization 
was performed using polynomial regression [14]. A good agreement 
on the hydrogen production rate was observed between custom made 
cell using the parameters predicted by the data-driven model and 
the model’s prediction. More recently, a data-driven methodology was 
proposed [24] to predict degradation trends of PEMECs by utilizing 
operational data. Ozdemir and Pektezel [25] investigated the effect 
of cell voltage, temperature, torque and flowrate on cell performance 
using machine learning algorithms from experimental data. They found 
that support vector machines outperformed the performance of random 
forest and multi-layer perceptron algorithms to predict current density 
and hydrogen flowrate. A low MAE of 0.006 and 0.0317 was noted 
for current density prediction on training and test data, respectively. 
The authors have also recently investigated PEMEC performance using 
synthetic data generated from numerical simulations [26]. Among the 
four different ML models they used, SVM demonstrated the highest 
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Nomenclature

ANN Artificial Neural Network
CL Catalyst Layer
CPE-T Constant phase element - Exponent (P)
CPE-T Constant phase element - Magnitude (T)
HER Hydrogen Evolution Reaction
KNN K Nearest Neighbors
LSTM Long-Short Term Memory
MAE Mean Absolute Error
MAE Mean absolute error
MAPE Mean Absolute Percentage Error
MEA Membrane Electrode Assembly
ML Machine Learning
MSE Mean Square Error
OER Oxygen Evolution Reaction
PEM Proton Exchange Membrane
PEMEC Proton Exchange Membrane Electrolytic 

Cell
PEMFC Proton Exchange Membrane Fuel Cell
PTL Porous Transport Layer
R2 Coefficient of determination
RCT Charge transfer resistance
RMSE Root Mean Square Error
Rs Solution resistance
SHAP Shapely Additive Explanations
SR Split Ratio
SVM Support vector machines
XGB Extreme Gradient Boosting

predictive performance with RMSE values of 0.0108 and 0.0371 on 
training and testing data, respectively. 

From the above literature, it is evident that research in the direction 
of integrating PEMEC experiments and machine learning has been 
predominantly focused on optimizing material properties, cell design 
and operating conditions. A critical parameter, cell activation, which 
influences membrane hydration and catalyst activation, has not been 
considered yet as a predictive feature in these data-driven investiga-
tions. Additionally, it is imperative for economical feasibility to predict 
the stability of the electrolyzer when operating under these different 
conditioning protocols. This would assist in selecting a conditioning 
procedure that not only shows maximal short-term performance, but 
is also suitable for long term sustained efficiency. This study aims 
to fill these gaps of knowledge. Firstly, we build upon experimental 
data obtained from lab-scale PEMEC for three different conditioning 
strategies and develop data driven models that include conditioning 
as a feature. This allows the model to predict cell performance by 
considering the influence of MEA’s initial treatment. Secondly, using 
SHAP as an explainable AI technique, we investigate which among 
the three pre-treatment procedures leads to the best cell performance. 
Finally, we model the stability of PEMEC using a database generated for 
over 200 h of cell operation. The temporal dependencies were captured 
using an LSTM. With its gated architecture, the LSTM circumvents the 
vanishing and exploding gradient problem encountered in conventional 
recurrent neural networks.

The paper is organized as follows: We begin with a brief description 
of the four different ML techniques 1(b) used for our work in Section 2. 
Data acquisition and information on data pre-processing are also pro-
vided in this section. Results are presented and discussed in Section 3 
followed by conclusions in Section 4
3 
2. Methodology

2.1. Data curation

The data were obtained from four in-house built single cells with 
commercial HYDRion MEAs purchased from Ion Power GmbH consist-
ing of Nafion N115 membrane. The anode catalyst layer comprised 
iridium oxide with a loading of 1.0 mg/cm2, while the cathode com-
prised platinum with a loading of 0.3 mg/cm2. The active area of the 
MEA is 4.4 × 4.4 cm2, which is larger than the active MEA area of 9 cm2

used in a recent study [25]. A 250 μm-thick CURRENTO 2GDL10N-0.25 
porous transport layer, with a platinum coating thickness of 0.25 μm
on both sides, was used as the anode-side PTL. A Toray carbon paper 
(TGP-H-60) was used as the cathode PTL. The bipolar plates were 
fabricated from titanium grade 2 and featured a parallel flow-field 
design. The anode and cathode sides of these plates were coated with 
platinum (2.5 μm) and gold (2.5 μm), respectively. Temperature control 
was achieved by heating each side of the cell with a pair of heating 
rods, regulated by a single temperature sensor on each side. The cells 
were operated in test stands with high-purity water supplied at a flow 
rate of 0.05 L/min. After pre-treatment, the operating temperature 
was set to 60 ◦C. Further information on the experimental setup and 
corresponding test stations is provided in [11].

The input features consisted of applied current density, frequency 
and amplitude. A new feature indicating the type of pre-treatment 
conditioning was added to the list of features. One-hot encoding [27] 
was applied to the conditioning feature to convert it into numerical 
data. The output variables were the cell voltage, the real and imaginary 
components of impedance. Both features and output variables were 
scaled using min–max scaling. The input features and the measured 
output variables are listed in Table  1. The range along which the input 
parameters were varied and the output variables were measured are 
also provided in this table. Furthermore, the description of each acti-
vation strategy is shown in Fig.  1. For every experiment, the data were 
logged at an interval of one second. From each of the four datasets, the 
data corresponding to the pre-treatment procedure was removed. Four 
different current densities: 0.5, 1.0, 1.5, and 2.0 A/cm2 were applied in 
ascending order for 12 h each. During these 12 h of operation at each 
current density, three polarization curves and impedance spectroscopy 
measurements were carried out. To prevent any outliers arising from 
spurious measurements, only data with voltage greater than or equal to 
1.4 V were considered, as this corresponds to the open-circuit voltage. 
Screening of missing values was performed and corresponding cells 
were removed from the database. After cleaning and combining the 
data from the four cell experiments, the entire database constituted of 
133558 data points. The database exhibits high diversity with the cat-
egorical feature, pre-treatment being evenly distributed for all the four 
considered cases with the Shannon entropy measured at 1.997 bits out 
of 2. Similarly, with a standard deviation of 0.62 A/cm2 and coefficient 
of variation of 1.03, the applied current density shows heterogeneity 
among the samples. In data-driven modeling, it is customary to split 
the data into training and test sets. Machine learning algorithms use 
the training data to learn the relationship between the input features 
and output variables. The test data are then used to evaluate the 
model’s performance in predicting outcomes on this unseen data set. 
We have used a split ratio of 8:2 to randomly divide the experimental 
database into training and test sets. A small dataset comprising of one 
polarization curve and impedance measurements taken at 1.0 A/cm2

was set aside to validate the trained models.
For predicting the electrolyzer stability, a separate database con-

sisting of 200 h of operational data is recorded for each activation 
procedure. The temporal prediction for cell voltage employing the 
LSTM model is made using this database.

Before we proceed with building machine learning models, it is im-
portant to check if the type of conditioning strategy has any significant 
influence on the cell voltage. Statistical significance tests like analysis 
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Table 1
Range of measured variables provided to the data-driven model.
 Parameters Type Unit Range of values  
 Current density Input A/cm2 [0.0–2.0]  
 Frequency Input Hz [0.1–5 × 105]  
 Activation Input (categorical) – ex-situ, in-situ/water(60 ◦C), 

in-situ/acids, in-situ/water(90 ◦C)
 

 Voltage Output V [1.4–1.93]  
 Impedance (Real) Output mΩ [7.5–20.48]  
 Impedance (Imaginary) Output mΩ [0–3.85]  
Fig. 1. (a) Description of the different MEA activation strategies investigated in this study. The in-situ/water (60 ◦C) is the reference activation strategy case 
against which the other pre-treatments methods were compared. (b) Schematic representation of the working principle of the employed machine learning models.
of variance (ANOVA) serve the important purpose of screening input 
features through evidence and help avoid feeding irrelevant variables 
or noise into the machine learning model. Since the focus of this study 
is to investigate the effect of conditioning on cell performance, we use 
ANOVA to verify its statistical significance. Table  2 shows the results 
of the one-way ANOVA performed on the cell voltage with the type 
of conditioning strategy as the categorical feature. With a 𝑝-value less 
than 0.001 and F(3, 133554) = 11.81, the ANOVA reveals that the type 
of MEA conditioning has a significant effect on cell voltage. Therefore, 
it is important to consider it as a input feature for ML modeling. To 
confirm further, we performed a pariwise comparison of the different 
conditioning strategies using the Tukey HSD statistical significance 
test. Table  3 presents these comparisons with adjusted p-values and 
4 
confidence intervals. The combinations reporting adjusted p-values less 
than 0.05 reject the null hypothesis. Based on the adjusted p-values 
and confidence intervals, we observe that ex-situ conditioning results 
in higher voltages compared to the in-situ methods. Moreover, the 
mean voltages for the base in-situ case are higher than the in-situ/water
(90 ◦C) MEA conditioning. These results reiterate that the type of 
conditioning has an statistically significant effect on cell voltage.

2.2. K-Nearest Neighbors (KNN)

K-nearest neighbors [28] is a non-parametric machine learning 
algorithm which is employed to make regression predictions. It account 
for the values of near of nearby data points to make a prediction. 
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Table 2
One-way ANOVA results for the effect of conditioning on cell voltage.
 Source Sum of squares df F p-value 
 Pre-treatment 0.703 3 11.81 <0.001  
 Residual 2649.82 133554 – –  

Table 3
Tukey HSD pairwise comparisons of voltage (Ewe) for different pre-treatment 
types. Significant differences (p < 0.05) are indicated.
 Group 1 Group 2 p-adj Lower CI Upper CI 
 ex-situ in-situ/acids 0.007 −0.0063 −0.0007  
 ex-situ in-situ/water(60◦) 0.000 −0.0083 −0.0029  
 ex-situ in-situ/water(90◦) 0.965 −0.0033 0.0023  
 in-situ/acids in-situ/water(60◦) 0.223 −0.0049 0.0007  
 in-situ/acids in-situ/water(90◦) 0.042 0.0001 0.0059  
 in-situ/water(60◦) in-situ/water(90◦) 0.000 0.0022 0.0079  

Mathematically, the prediction made by KNN is expressed as: 

𝑦̂ = 1
𝑘

∑

𝑥𝑖∈𝑁𝑘(𝑥)
𝑦𝑖 (1)

where 𝑦̂ is the prediction made by the model, k is the number of nearest 
neighbors, 𝑥𝑖 are the data points which belong to the set 𝑁𝑘, 𝑥 is the 
input where we want to predict the output and 𝑦𝑖 is the target values 
corresponding to 𝑥𝑖. The hyperparameter to select for this model is the 
number of nearest neighbors (k). The algorithm proceeds with selecting 
the nearest k number of points, based on their euclidean distance with 
the input 𝑥. The final output prediction is made by taking the average 
of the target values at these k points from the training database.

2.3. Extreme gradient boosting (XGB)

XGBoost (eXtreme Gradient Boosting) is a machine learning tech-
nique which uses an ensemble of decision trees built in a sequential 
manner for solving both regression and classification problems. The 
working principle of a single decision tree involves recursively split-
ting the training dataset into subsets. This splitting is done based on 
selecting a particular input feature and its value such that it creates a 
homogeneous subset. This splitting process continues until the tree has 
reached a maximum depth or has a minimum number of samples in the 
resulting node. XGB operates by iteratively building a weak decision 
tree to predict the negative gradient of the loss function (squared 
error), which is the basis of the gradient boosting algorithm. Each of 
these decision trees is sequentially fit to minimize the residuals of the 
preceding trees.

2.4. Artificial neural network (ANN)

Inspired by the architecture and functionality of biological neurons, 
artificial neural networks are computational models which are capable 
of accurately predicting regression problems. The basic working unit of 
ANN is the neural node or neuron. Neurons are mathematical operators, 
which receive inputs and transmit output signals known as activations. 
A group of neurons are stacked together to form a layer. The first layer 
represents the input layer wherein, each node transmits individual in-
put parameters. Similarly, the last layer is the output layer constituting 
the nodes which predict the target variables evaluated by the model. 
Interim layers are known as hidden layers which process and extract 
features from data. The information flow occurs from the input to the 
output layer through the hidden layers. Further details of XGB and ANN 
methods have been outlined in  [19,20].

2.5. Long-short term memory (LSTM) model for forecasting

LSTM [29] are specialized version of recurrent neural networks 
(RNN) which overcome the problem of vanishing and exploding gra-
5 
dients, inherent to RNNs. In order to overcome these limitations, the 
LSTM networks have a gated architecture and memory cells which 
control the flow of information. These gates assist LSTM network in 
selectively retaining or discarding information. The LSTM architecture 
constitutes of the following components:

• Cell state: This component carries the information about the long 
term history of the time series. The cell state influences the output 
of the LSTM unit at the current time step.

• Forget gate: It controls the amount of the previous long-term 
memory that needs to be retained for the current time step. It 
employs a sigmoid function and is mathematically expressed as: 
𝑓𝑡 = 𝜎(𝑊𝑓 .[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 ) (2)

• Input gate: This gate has two components comprising of a tanh 
layer and sigmoid layer. These two components determine the 
new long-term memory and the amount of this new long term 
memory that contributes to the information passed by the forget 
gate, respectively. 
𝑖𝑡 = 𝜎(𝑊𝑖.[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (3)

𝐶̂𝑡 = 𝜎(𝑊𝐶 .[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶 ) (4)

𝐶𝑡 = (𝑓𝑡 × 𝐶𝑡−1) + (𝑖𝑡 × 𝐶̂𝑡) (5)

• Output gate: The last gate decides the output of the LSTM unit 
using the current cell state. 
𝑂𝑡 = 𝜎(𝑊𝑜.[ℎ𝑡−1,𝑥𝑡 ] + 𝑏𝑜) (6)

ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ(𝐶𝑡) (7)

In the above mentioned equations, 𝑊𝑥 and 𝑏𝑥 correspond to the weights 
and biases of different gates (𝑥 ∶ 𝑓, 𝑖, 𝐶 and 𝑜). A number of LSTM 
units could be stacked to form a layer, and such different layers can 
placed sequentially to allow the passage of information. To perform 
the stability analysis, we have used two layers having 50 and 25 LSTM 
units, respectively.

3. Results and discussion

We present the results by first assessing the performance of the three 
machine learning models using residual plots. We then follow up by 
validating these models using experimental data. We then perform a 
parametric analysis using the model which performs best on all the 
target variables.

3.1. Model performance

Residual plots allow us to visually infer the error distribution and 
patterns generated from the predictions made by the ML model. Fig.  2 
illustrates the residual plots for KNN, XGB and ANN machine learning 
models. Each of these models was trained on three separate target 
variables, namely, cell voltage (top row), real part (middle row) and the 
negative imaginary part of impedance (bottom row). The search range 
and the values of the final selected hyperparameters for the trained 
ML models are provided in Table  4. Mathematically, the residual is 
defined as the difference between the experimental value and model 
prediction. For instance, the residual plots in the middle row show 
the accuracy of the three models in predicting the real component 
of impedance when compared against the actual experimental data. 
While cell voltage provides insights into the overall efficiency of the 
cell, impedance measurements shed light in segregating the different 
overlapping processes, such as electrode kinetics, ohmic resistance and 
mass transfer losses occurring inside the system. The residuals obtained 
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Table 4
Hyperparameters and search range for each machine learning model.
 Model Hyperparameter Search range Selected values (Voltage, Re(Z) and -Im(Z))
 KNN n_neighbors [3,8,11,14] 3, 8 and 8  
 XGB n_estimators [100–800] 300, 800 and 800  
 learning_rate [0.05–0.20] 0.015, 0.005 and 0.005  
 
ANN

No. of hidden layers [2–4] 4, 3 and 4  
 No. of hidden units [20–100] [100-80-60-30], [60-40-20] and [100-80-60-30] 
 learning rate [0.0001–0.01] 0.00025, 0.001 and 0.00015  
Fig. 2. Residual plots showing the comparison between the predicted current densities (top row), real (middle row) and imaginary (bottom row) components 
of impedance with those obtained from experimental data. The model’s performance on the training and test set are shown in each plot by the RMSE and R2

values.  (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
from the training and testing datasets are indicated using different 
colors. Furthermore, the root mean square error (RMSE) and coefficient 
of determination (R2) are used to quantify the performance of the 
machine learning models. These metrics are defined as follows: 

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑗=1
(𝑦𝑗 − 𝑦̂𝑗 )2 (8)

𝑅2 = 1 −
1
𝑛
∑𝑛

𝑗=1(𝑦𝑗 − 𝑦̂𝑗 )2

1
𝑛
∑𝑛

𝑖=1(𝑦𝑗 − 𝑦̄𝑗 )2
(9)

where n denotes the number of samples, 𝑦𝑗 represents the ground truth 
obtained from the experimental data, 𝑦̂ denotes the model prediction 
and 𝑦̄ is the average value of 𝑦𝑗 .

From Fig.  2 (top row), we observe that the residual distribution 
across the entire range of cell voltage is similar for all the three tested 
6 
models. The residuals for both training and test data are within 0.02 
V for KNN and XGB models. Some outliers, especially for the test data, 
are observed for the ANN model, for which the residuals reach as large 
as 0.06 V. The KNN model shows the best performance on the training 
data with RMSE = 0.0026, whereas for the unseen test data, XGB shows 
a slightly better performance with RMSE = 0.0031. All the models have 
R2 greater than 0.999, indicating good model performance in predicting 
voltage.

While voltage prediction is directly linked to applied current den-
sity, electrochemical impedance spectroscopy (EIS) is a complex valued 
variable that is frequency dependent. Several system parameters such 
as membrane resistance, double-layer capacitance and diffusion, which 
represent various processes transpiring within the system, influence 
impedance. These factors impose challenges in modeling impedance 
accurately. We infer this behavior from the distribution of residuals 
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Table 5
Comparison of methods with performance metrics on Voltage, real (Re(Z)), and imaginary (-Im(Z)) components 
of impedance on the test data.
 Method Split type Voltage Re(Z) -Im(Z)

 𝑅2 RMSE 𝑅2 RMSE 𝑅2 RMSE  
 KNN Random 0.999 3.0 × 10−3 0.994 2.11 × 10−4 0.983 1.15 × 10−4 
 Grouped 0.975 2.3 × 10−2 0.802 1.3 × 10−3 0.953 1.91 × 10−4 
 XGB Random 0.982 1.84 × 10−2 0.995 1.76 × 10−4 0.994 6.81 × 10−5 
 Grouped 0.974 2.43 × 10−2 0.722 1.54 × 10−3 0.959 1.79 × 10−4 
 ANN Random 0.999 3.52 × 10−3 0.996 1.63 × 10−4 0.994 6.99 × 10−5 
 Grouped 0.963 2.87 × 10−2 0.743 1.48 × 10−3 0.714 4.74 × 10−4 
of the real (middle row) and imaginary (bottom row) components of 
impedance shown in Fig.  2. The KNN model shows an ideal fit for both 
Re(Z) and Im(Z) on the training data, with RMSE = 5.3 × 10−7 and 
1.33 × 10−7 for the training and test data, respectively. However, the 
model’s performance on the test data is marked by a pattern which is 
characterized by an increase in the spread of residuals as the applied 
frequency increases. This pattern is also observed for XGB and ANN 
models, with the residuals of Re(Z) for the ANN model showing a 
wavy pattern on the test data. The non-constant variance of residuals 
for impedance predictions indicates heteroskedasticity in the models. 
While the KNN model exhibits high variance due to overfitting the test 
data, the ANN model is characterized by a large number of outliers 
on the data for Im(Z). Although the RMSE values on the test data 
for both components of impedance indicate that ANN model performs 
slightly better than XGB, ANN model also showcases a higher degree 
of heteroskedasticity compared to XGB. For Re(Z), XGB model shows 
a lower variance in residuals when compared to the ANN model. In 
general, we observe that modeling the capacitive part (imaginary) of 
impedance is challenging when compared to the resistive component. 
Therefore, among the three tested machine learning models, the XGB 
model shows overall better performance for voltage and impedance 
prediction.

The model performance shown so far is based on random splitting 
of the database into training and testing data sets. Random splitting 
ensures that there is good representation of all feature values, both 
numerical and categorical features, in both datasets. This provides 
insights into the overall fitting ability of the models. However, as we are 
using the type of MEA activation as an input feature, the chances of data 
leakage may arise if the same specific activation type is present in both 
the training and test datasets. Data leakage occurs when measurements 
from the same experiment appear in both the training and test datasets. 
To investigate the occurrence of data leakage further, Table  5 shows the 
R2 and RMSE performance metrics for all the three tested models under 
random and grouped splitting, with the test data under consideration. 
The group splitting was performed such that all samples from a specific 
activation type are kept only in the test dataset, while the training 
dataset consists of samples from the remaining activation type. We 
observe that 𝑅2 and RMSE for voltage predictions show a slight drop 
when using grouped splitting compared to random splitting. This is a 
general observation, as the models are making predictions on unseen 
categorical features, which reflects their generalization ability. A sharp 
drop in the R2 values (0.2–0.3) are noted for RE(Z) prediction when 
modeled under grouped splitting. KNN performs slightly better and 
XGB and ANN models. For Im(Z) predictions, ANN model exhibits 
overfitting as a large drop from 0.994 to 0.714 is observed when the 
splitting type is changed from random to group. The metrics shown 
in Table  5 indicate that the voltage predictions made by the models 
are relatively stable with respect to data leakage when compared to 
predicting impedance.

3.2. Model validation

The residuals and performance metrics give us insights into the 
overall performance of the trained models. To further elucidate the 
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model performance quantitatively, we compare their predictions with 
experimental data for (a) thermal and (b) chemical conditioning pro-
cedures as shown in Fig.  3. Polarization curves and Nyquist plots 
measured at a current density of 1 A/cm2 are used to draw the com-
parison. For the thermal conditioning procedure, the experimentally 
obtained polarization curve is in good agreement with all the three 
models as illustrated in Fig.  3(a). The Nyquist plot on the other hand 
exemplifies the differences in model predictions from experimental 
measurements. The fitting values obtained from the equivalent circuit 
model are shown in Table  6. The ANN model shows larger deviations 
with experimental data when compared to XGB and KNN models. For 
the thermal pre-treatment, the ANN model under predicts the ohmic 
resistance and continues this trend across the entire range of applied 
frequencies, marked by a shift in the Nyquist plot towards the left side 
of the experimental data. Predictions made by the KNN model show 
good agreement with impedance measurements in the high-to-medium 
frequency range. However, we notice that at low frequencies, it exhibits 
large deviations from experimental data (Re(Z) 9.0). Both the ohmic 
and charge transfer resistances are captured accurately by the XGB 
model. We observe that for the entire range of applied frequencies, the 
predictions made by the XGB model are close to the experimental data, 
albeit showing a slight overprediction in the capacitive component of 
impedance at medium frequencies. Fig.  3(b) elucidates the comparison 
between ML model predictions and experimental measurements for the 
case of applying chemical conditioning to the MEA. Similar to our 
earlier observation for thermal conditioning, the ML models show good 
agreement with experimental data for the polarization curve. Predic-
tions made by both KNN and XGB models agree well with experimental 
measurements of impedance for chemical conditioning. However, in 
this case the ANN model shows slight overprediction of the ohmic 
and charge transfer resistances as it shifts slightly to the right of the 
experimental Nyquist plot.

From the residual distributions on the impedance data shown in 
Fig.  2, we conclude that the KNN model fits well to the training data 
and under performs when subjected to test data. Even though the 
model shows good agreement with experimental measurements in Fig. 
3, we observe that the model tends to memorize the training data 
due to its instance based learning approach. The predictions of the 
model are highly dependent on the local structure of the data. This 
is shown as the model predicts noisy impedance data at low frequency 
for chemical conditioning, as noticed in Fig.  3(b). The lack of regular-
ization techniques makes KNN prone to over-fitting. Neural networks 
on the other hand are designed with a lot of parameters which enable 
them to learn the complex underlying relationship between the input 
features and the components of impedance measurements. In order to 
establish this relationship accurately, ANNs require a large amount of 
training data. Especially for impedance measurements, where different 
electrochemical processes take place across a wide range of frequencies, 
the model can overfit or only capture the dominant mechanism when 
trained on a smaller data set. These factors may attribute to the under 
and over prediction of the ANN model on the experimental impedance 
measurements shown in Fig.  3(a) and (b), respectively. In terms of 
overall accuracy and effectively capturing the trends in experimental 
data, XGB has demonstrated better performance. Therefore, we select 
this model to proceed ahead with parametric analysis.
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Fig. 3. Comparison between experimental measurements and model prediction through polarization curve and Nyquist plot for MEAs pre-treated with (a) 
deionized water at 90 ◦C and (b) acidic solutions. The impedance measurements were made at a current density of 1.0 A/cm2. Additionally, it is to be noted 
that as the applied frequency increases, the real component of impedance decreases.
Table 6
Equivalent circuit model fitting parameters for different ML models corresponding to the Nyquist plot in Fig.  3.
 Pre-treatment Model Rs (Ω) RCT (Ω) CPE-T CPE-P

 Value Error% Value Error% Value Error% Value Error% 
 
Thermal

Experiment 7.528 0.20 1.755 1.45 0.0076 7.74 0.7439 1.92  
 KNN 7.500 0.38 1.719 2.67 0.0067 14.72 0.7599 3.53  
 XGB 7.463 0.16 1.855 1.14 0.0095 5.78 0.7182 1.52  
 ANN 7.340 0.21 1.676 1.55 0.0074 8.43 0.7624 2.04  
 
Chemical

Experiment 7.832 0.12 1.682 1.19 0.0088 6.19 0.7542 1.51  
 KNN 7.834 0.15 1.679 1.40 0.0091 7.25 0.7538 1.78  
 XGB 7.921 0.15 1.666 1.46 0.0092 7.56 0.7389 1.87  
 ANN 7.813 0.16 1.695 1.47 0.0093 7.57 0.7409 1.88  
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.3. Effect of activation strategies

We now compare the influence of ex-situ, in-situ/acids and in-
itu/water (90 ◦C) activation procedures against the reference case using 
lectrochemical characterization. Polarization curves and Nyquist plots 
re used to elucidate the comparison among these protocols. All the 
esults presented in this section are obtained from the XGB model. In 
his study, four different MEA activation procedures were carried out 
o evaluate their influence on PEMEC performance. One of these four 
re-treatment strategies is selected as the reference case, against which 
ther cases are compared. For the reference conditioning procedure, 
he MEA was hydrated with deionized water at 60 ◦C for 12 h. This 
rocedure was performed after the MEA had been assembled in the 
ell. We now discuss the impact of other three activation procedures 
n cell performance and compare them with the reference case.

.3.1. Mechanical impact
For the ex-situ activation procedure, the MEA was first hydrated 

ith deionized water at 60 ◦C for 12 h (ex-situ) and then assembled 
nto the cell in a wet state. This highlights the effect of membrane 
o

8 
welling, due to hydration, on the cell performance. Fig.  4(a) illustrates 
he comparison between ex-situ and reference conditioning procedures 
hrough polarization curves. For lower current densities (0–0.5 A/cm2), 
e do not notice any substantial differences between the pre-treatment 
rocedures. As the current density increases, we observe higher cell 
oltage values for ex-situ activation when compared to reference sce-
ario. It can be seen from the inset figure that this difference in cell 
oltage values increases, especially at higher current densities. For 
xample, a difference of 28.5 mV is observed at an applied current 
ensity of 2.0 A/cm2 between these two conditioning procedures. The 
nfluence of different current densities on the impedance spectra for 
echanical impact is shown through the Nyquist plot in Fig.  4(b). It 
s important to note that certain selected current densities (0.75, 1.25 
nd 1.75 A/cm2) were not present in the original training data. This 
s intended to showcase the model’s capability in making predictions 
or parameter values not included in the training database. Therefore, 
e use the developed data-driven model to make these predictions. 
he ohmic resistance is obtained from the high frequency limit of 
he impedance spectra. We notice a negligible change of 0.34 mΩ in 
hmic resistance as current density varies from 2.0 to 0.50 A/cm2. The 
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Fig. 4. Electrochemical performance comparison between reference and ex-situ activation. (a) Polarization curves highlighting performance reduction due to 
mechanical impact. (b) Nyquist plots at different current densities (0.5–2.0 A/cm2) for ex-situ activation showcasing the changes in ohmic (R𝛺) and charge 
transfer resistance. (c) Comparison of Nyquist plots between reference and ex-situ activation, illustrating increased R𝛺 due to mechanical impact.
Fig. 5. Electrochemical performance comparison between reference and in-situ/acids activation. (a) Polarization curves highlighting performance improvement 
due to chemical impact. (b) Nyquist plots at different current densities (0.5–2.0 A/cm2) for in-situ/acids activation showcasing the changes in ohmic (R𝛺) and 
charge transfer resistance. (c) Comparison of Nyquist plots between reference and in-situ/acids conditioning, illustrating reduced R𝛺 due to chemical impact.
charge transfer resistance, obtained from the low frequency intercept, 
decreases as current density increases. This is attributed to the fact that 
as current density increases, the over potential increases, leading to an 
increase in the reaction driving force. As a result, the charge transfer 
resistance decreases. To exemplify the influence of mechanical impact 
on cell performance, we compare the Nyquist plots obtained at current 
density of 1.75 A/cm2 in Fig.  4(c). The ohmic resistance for ex-situ
and reference were found to be 8.79 mΩ and 8.16 mΩ, respectively. 
Similarly, the charge transfer resistance is increased from 9.14 mΩ to 
9.96 mΩ, when the MEA underwent mechanical impact. These results 
indicate that ex-situ activation results in reduced cell performance.

3.3.2. Chemical impact
For in-situ/acids activation, the MEA was first assembled into the 

cell (in-situ) and treated with a continuous supply of hydrogen peroxide 
(H2O2) for 1 h. This procedure was then followed up by a consecutive 
supply of deionized water and 0.5 mol/L sulphuric acid (H2SO4) for an 
interval of 1 h each. Finally, the MEA was treated with deionized water 
at 60 ◦C for 12 h to conclude the in-situ/acids activation procedure. 
Fig.  5(a) illustrates the effect of in-situ/acids activation against reference
on the polarization curve. Unlike the previous case shown in Fig. 
4(a), we observe a slight improvement (in the order of millivolts) 
in voltage losses when the MEA undergoes pre-treatment chemically. 
This improvement is further exemplified from the inset shown in Fig. 
5(a). Fig.  5(b) shows the effect of current density on the ohmic and 
charge transfer resistance for chemically treated MEA. A negligible 
change of 0.1 mΩ in ohmic resistance is observed when the current 
density increases from 2.0–0.5 A/cm2. This indicates a lower variance 
in ohmic resistance for in-situ/acids activation when compared to ex-
situ pre-treatment discussed above. However, the evolution of charge 
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transfer resistance follows a similar trend, decreasing as current density 
increases. A 27.4% increase in charge transfer resistance is observed 
when the current density varies from 0.5–2.0 A/cm2. Chemical pre-
treatment of the MEA leads to reduction in the ohmic resistance, 
thereby, facilitating better mobility of ions across the membrane. This 
is inferred from the reduction of R𝛺 from 8.16 mΩ for in-situ/acids
activation to 7.75 mΩ for the reference case, as shown in Fig.  5(c). Along 
the same lines, the charge transfer resistance also reduces from 9.14 mΩ
to 8.76 mΩ when the MEA is subjected to chemical pre-treatment.

3.3.3. Thermal impact
For the last conditioning procedure, the MEA was assembled in the 

cell (in-situ) and deionized water at 90 ◦C was supplied through the 
cell for 12 h. The difference between this procedure and the reference
conditioning procedure lies in the temperature of the deionized water 
used during pre-treatment. During cell operation, measurements for all 
the conditioning procedures were made with water at 60 ◦C. Similar to 
the chemical activation procedure, MEA pre-treated with 90 ◦C shows 
improved performance, evidenced by a decrease in cell voltage, as 
illustrated from the polarization curve in Fig.  6(a). This reduction in 
cell voltage is observed across the range of applied current densities. 
Furthermore, the magnitude of this voltage reduction remains nearly 
constant across different current densities. For instance, the voltage 
differences between the reference and in-situ/water(90 ◦C) activation 
procedures at current densities 0.52 A/cm2, 1.54 A/cm2 and 1.95 
A/cm2 is found to be 14.61 mV, 14.8 mV and 13.78 mV, respectively. 
From Fig.  6(b), we observe that R𝛺 remains largely unchanged as 
the applied current density increases from 0.5–2.0 A/cm2. This maybe 
attributed to the fact that after pre-treatment with deionized water 
at 90 ◦C the membrane is fully hydrated, thereby, minimizing the 
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Fig. 6. Electrochemical performance comparison between reference and in-situ/water(90 ◦C) activation. (a) Polarization curves highlighting performance 
improvement for thermally activated MEA. (b) Nyquist plots at different current densities (0.5–2.0 A/cm2) for in-situ/water(90 ◦C) activation showcasing the 
changes in ohmic (R𝛺) and charge transfer resistance. (c) Comparison of Nyquist plots between reference and in-situ/water(90 ◦C) activation, illustrating reduced 
R𝛺 for thermal activation.
resistance for movement of H+ through the membrane. As the charge 
transfer resistance decreases, the current density scales logarithmically 
with the overpotential. The impact of in-situ/water(90 ◦C) activation 
in assisting ion transfer through the membrane can be further corrob-
orated from Fig.  6(c), where we observe that a decrease in R𝛺 from 
8.16 mΩ (reference) to 7.14 mΩ for an applied current density of 1.75 
A/cm2.

3.4. Comparative analysis of conditioning strategies using SHAP

In the preceding section, we compared the electrochemical per-
formance comparison of the three conditioning strategies with that 
of the reference case, in which the MEA was hydrated with deion-
ized water at 60 ◦C for 12 h. While the differences between each of 
these conditioning procedures were quantitatively illustrated against 
the reference case, an overall comparison between these procedures 
is yet to be provided. Moreover, the underlying variations in cell 
performance resulting from different conditioning treatments warrant 
further conjecture and discussion. We undertake these analysis in this 
section using the explainable AI technique known as SHAP.

The SHAP [30] technique is a method based on game theory that 
asserts importance values for each input feature that contributes to a 
given prediction made by the machine learning model. The SHAP value 
indicates the average contribution of a particular feature, across all 
possible input parameter combinations, in making model predictions. 
This in turn helps us to understand how and why the machine learning 
model favors a particular feature over others. Fig.  7(a) shows the 
SHAP plot elucidating which among the three conditioning procedures 
contributes most to the cell voltage. The x-axis represents the scale for 
SHAP values, and each point corresponds to an experimental instance, 
indicating the SHAP value for the respectively conditioning experiment. 
The ranking of conditioning strategies is based on their average SHAP 
values. The scale bar placed on the left of the plot represents the value 
of the features. It should be noted the unlike input parameters with 
numerical values, such as current density or frequency, categorical 
features do not have numerical values. These categorical features are 
encoded into numerical format using one-hot encoding. It transforms 
categories into binary vectors wherein each category is represented by a 
separate column. After performing one-hot-encoding, the single feature 
column of pre-treatment type consisting of four cases is transformed 
into four columns leading to the formation of three new features. 
Each of these four column corresponds to a specific pre-treatment type 
and has a binary value of 0 or 1. For instance, when a data point 
corresponding to the ex-situ is considered, the ex-situ feature column 
has the feature value = 1 and other three columns have the feature 
value = 0. In this way, one-hot-encoding transforms categorical features 
into binary numerical features. Therefore, each of the four categories 
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(including reference) appear separately in Fig.  7(a). A red dot (binary 
value = 1) denotes the activation or presence of the corresponding 
conditioning process for a given instance, whereas a blue dot (binary 
value = 0) signifies its absence. We observe that the ex-situ procedure 
has the highest impact on cell voltage. When the conditioning process 
is activated, it predominantly has positive SHAP values ranging as far 
as 0.05. This indicates that ex-situ activation has a positive correla-
tion with cell voltage, which means, it attributes to an unfavorable 
increase in cell voltage. This pre-treatment is followed by the base or 
the reference conditioning procedure. Similar to ex-situ activation, it 
also shows positive correlation with cell voltage. However, its impact 
on cell voltage is lower than that exerted by mechanical impact, as 
denoted by its SHAP values. A positive correlation emphasizes the fact 
that employing ex-situ activation leads to an increase in cell voltage, 
indicating higher voltage losses against the base case. A reversal in 
this trend is observed for these two other conditioning procedures. The 
SHAP value distribution for the in-situ/acids activation denotes that 
it has a negative correlation with cell voltage and the average SHAP 
value lower than the base case. Therefore, inline with our observa-
tions from the preceding sections, SHAP analysis also corroborate that 
chemically activated MEAs results in overcoming cell voltage losses. 
The in-situ/water(90 ◦C) activation procedure shows relatively better 
performance among the tested activation procedures.

From the above discussions, it is evident that ex-situ activation 
performs inferior to the base case, whereas the in-situ/acids and in-
situ/water(90 ◦C) activation exhibit improved performance against the
reference. These observed variations in cell performance could stem 
from various underlying factors. For ex-situ pre-treatment, the mem-
brane is hydrated for 12 h ex-situ before it is assembled into the cell. 
While for ex-situ and reference cases the membrane is subject with water 
at same temperature, the topology of the membrane after hydration 
will differ in these two situations. For reference condition [11,31], the 
membrane is hydrated with the cell which is confined within the con-
finements of the cell geometry. Therefore, the predominant direction 
of membrane swelling would occur along the axial or through-plane 
direction. This enhances the contact between the catalyst particles 
and the porous PTL layers. However, owing to unrestricted membrane 
expansion in the case of ex-situ activation, the membrane undergoes 
swelling in both along the axial and through-plane directions. This 
expansion along the in-plane direction may hinder the contact between 
catalyst particles and PTL, once the membrane is assembled into the 
cell. This leads to an increase in R𝛺 resulting in lower performance 
when compared to the base case. Pre-treatment with H2O2 is known to 
remove organic impurities from the catalyst layer [32] of MEAs man-
ufactured in industry. This results in improving the contact resistance. 
Additionally, pre-treatment with H2SO4 enhances protonic conductivity 
as H+ ions from the acid replace metal cations present in the membrane. 
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Fig. 7. (a) Ranking different MEA conditioning procedures using an explainable methodology (SHAP). The ranking is estimated using the developed XGB data-
driven model. (b) Impact of conditioning procedure on cell voltage and ohmic resistance at 2 A/cm2 using direct experimental data.  (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)
Source: Figure adapted with permission from [11].
As the number of H+ ions increases, the protonic conductivity increases. 
Therefore, the combined influence of lower interfacial resistance and 
enhanced protonic conductivity(in the ionomer/membrane) can be at-
tributed to the improved performance of in-situ/acids activation against 
the base case. Finally, it is well established that when Nafion membrane 
is hydrated with deionized water at higher temperature, it increases the 
hydration state of the membrane [33]. This implies that the number 
of water molecules surrounding the sulphonic sites of the membrane 
increases. As a result, the ionic conductivity of the membrane increases 
during in-situ/water(90 ◦C) activation procedure leading to improved 
cell performance.

At this point, it is pertinent to note that SHAP analysis allows us to 
get insights into how the machine learning model makes its decision to 
rank the features based on their importance. However, it is important 
to verify that the validity of this interpretation is in line with actual 
experimental data. This in turn, would prevent us from drawing false 
conclusions and imbibe more trust on the model. Fig.  7(b) shows the 
comparison between all the conditioning procedures obtained from 
experimental measurements [11]. The voltage distribution at a current 
density of 2 A/cm2 clearly indicates that ex-situ conditioning process 
leads to higher cell voltage when compared to in-situ at 60 ◦C. The
in-situ acids shows better performance and in-situ water at 90◦ show 
better performance than the base case. The strong alignment between 
experimental rankings and SHAP analysis strengthens our trust in the 
reliability of SHAP interpretations.

From the above discussions, we have seen the impact of three 
activation procedures against a reference case. Each of these methods 
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has its own advantages and disadvantages. While soaking a membrane
ex-situ [11] enhances water uptake and initial membrane ionic con-
ductivity, excessive swelling hinders catalyst loading accuracy [34]. 
Our results shown in Fig.  4 confirm this negative effect of mechanical 
impact on cell performance. Pre-treatment with chemicals removes or-
ganic/inorganic contaminant and manufacturing impurities. This leads 
to improved cell performance [11]. However, further exploration in 
terms of evaluating the effectiveness is still warranted by using spec-
troscopic techniques. Similarly, improved cell performance through 
thermal pre-treatment is well established in PEMFCs [8]? and more re-
cently in PEMEC [11]. Our model predictions discussed in the previous 
section are inline with these observations. Nevertheless, the long term 
impact of thermal pre-treatment needs to be further investigated.

3.5. Effect of pre-treatment on electrolyzer stability using LSTM

Probing into the stability of cell voltage for a PEMEC, operating at 
a given current density, can reveal insights into the long-term perfor-
mance of the system. It can provide insights into degradation effects, 
membrane hydration and catalyst utilization. Consistency in voltage 
output over a long-period of time indicates healthy cell operation. We 
now discuss the voltage stability analysis and compare the three pre-
treatment procedures. Fig.  8 compares the voltage stability curves for
ex-situ, in-situ/water(90 ◦C) and in-situ/acids activation procedures. The 
cell voltage is recorded at an operating current density of 2 A/cm2

for a time interval from 58 to 206 h. Prior to reaching its current 
operating current density, the cell was operated at a series of lower 



K.A. Raman et al. Energy and AI 22 (2025) 100623 
Fig. 8. Cell voltage profiles for around 150 h of PEMEC operation at an applied current density of 2 A/cm2. The colored lines and the black dashed lines 
represent the experimental data for the three pre-treatment procedures and model predictions, respectively. The background color grading indicates the data used 
for training and testing intervals. The performance of the LSTM model is noted through the RSME values. The comparison reveals distinct stability characteristics 
across the conditioning strategies.  (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
current densities, which were gradually increased over time. Moreover, 
nearly after every 20 h, EIS and polarization curve measurements were 
conducted to monitor the performance at varying current densities. 
All the three conditioning methods showed stable voltage profiles 
thought the 150 h on operation. For instance, the cell voltage for ex-situ
activation varied from 1.923 V to 1.921 V between the initiation of the 
first and second break-in procedure at 77.5 and 101.3 h, respectively. 
Before the commencement of the final break-in procedure at 196.7 h, 
a cell voltage of 1.913 was recorded. At the end of this operational 
time period which includes the intermittent procedures, a cell voltage 
drop of less than 10 mV was noticed. The other two conditioning pro-
cedures also exhibited similar pattern in voltage stability, showcasing 
the operational durability. A voltage difference of 5 mV and 17 mV 
were noted for in-situ/acids and in-situ/water(90 ◦C) activation cases 
between the beginning of the first and the last break-in procedures. In 
terms of the comparative performances for between the conditioning 
procedures, we observe that inline with our previous observations, the
ex-situ pre-treatment showcases highest increase in cell voltage. In-
situ/acids activation procedure showed more stable cell performance 
when considered for long-term operation. While the difference in the 
pre-break-in voltage between ex-situ and in-situ/water(90 ◦C) treat-
ments tends to decrease at certain time intervals, specifically at 77.5 h 
and 196 h, the chemically treated MEA maintains a nearly constant cell 
performance, with voltage of 1.865 V and 1.863 V at these respective 
time instants. The predictions made by the LSTM model for the three 
cases are also shown in Fig.  8. The model shows good agreement 
on both the training and testing time intervals with the experimental 
data, indicating its capability to accurately capture the underlying 
dynamics. Since the change in cell voltage for chemically activated 
MEA is nearly constant throughout the time interval, the LSTM model 
shows lowest RMSE for this case with the values of 0.0058 and 0.0055 
for training and test data, respectively. the RMSE values on the testing 
dataset for ex-situ and in-situ/water(90 ◦C) pre-treatment procedures 
were computed to be 0.0062 and 0.0077, respectively.

At this point, it is important to note that the effect of activation 
strategies can be different on the short-term and long term cell perfor-
mance. In the previous section, we have observed that the activation 
induced by thermal effect performs slightly better than that applied 
with chemical impact. However, we not note a switch in this trend 
from our observations in Fig.  8. We clearly observe that for long-term 
operation, activation induced by chemical impact has a better per-
formance than in-situ/water (90 ◦C) activation. While activating MEA 
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with water at 90 ◦C increases its hydration state initially, as the cell 
continues to operate with water at 60 ◦C, its hydration state gradually 
comes down. Therefore, the cell voltage increases with time and its 
showcases a reduced performance when compared against the MEA 
activated chemically. To further elucidate this switch in performance 
behavior, Figure 10 illustrates the time period during which we notice 
this switch in performance between these two activation processes. 
Before 50 h, thermal impact shows a better performance than chemical 
impact. However, we notice change in this pattern with the time frame 
of 50–54 h. Beyond this time frame, chemically activated MEA show 
better performance.

A time series data constitutes of key components which can be 
additive or multiplicative: trend, seasonality, cyclicity and residual. These 
components inform us about the different features of the time series 
data. The trend component indicates the general direction of the time 
series data observed for a long period of time. The regular and periodic 
fluctuations in the data are characterized by its seasonal component. 
When these fluctuations in data are not periodic, they are related to the
cyclic component. Finally, the random and unpredictable variations in 
the time series are governed by the residuals. Conventional time series 
methods [35] focus on predicting the trend and the seasonal component. 
The ease in extracting these components could be attributed to the 
fact that trend and seasonal/cyclic are characterized by a systematic 
and repeating patterns in data progression. Therefore, conventional 
statistical tools were designed to extract these patterns and repeating 
structures, while assuming the residuals as unpredictable white noise. 
However, it is crucial to model at least parts of the residual, to make 
reliable forecasting in real time applications.

Fig.  9 shows the comparison of the (a) trend(b) seasonal and (c)
residual components of experimental data and cell voltage predictions 
made by the LSTM model for the three conditioning procedures. The 
time series were decomposed using additive assumption. In general, we 
observe the voltage has an increasing trend for all the three cases, albeit 
at a lower rate. This pattern in trend evolution repeats each time after 
the break-in procedure. A good agreement between the experimental 
and model prediction is noted. The more irregular but periodic seasonal
component shown in Fig.  9(b) is also well captured by the LSTM 
model. In particular, we observe that the seasonal component for in-
situ/water(90 ◦C) activation has a larger contribution to the overall 
cell voltage, with an amplitude variation of ±0.25 V when compared 
with the other two cases with ±0.05 V. The central advantage of the 
LSTM model is not only in its ability to accurately capture the trend and
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Fig. 9. Comparison of LSTM model predictions with experimental data across (a) trend (b) seasonal and (c) residual components of the cell voltage time series. 
The time series decomposition for the three conditioning procedures is shown, highlighting the model’s ability to accurately capture the long-term trend, periodic 
seasonal patterns, and residual variations.
seasonal component, but also the residuals accurately as illustrated in 
Fig.  9(c). For all the three cases, we observe that the residual component 
has a larger contribution than the seasonal component to the voltage 
time series. The ability of LSTM to predict residuals lies with the 
assumption made in defining residuals by conventional methods [35]. 
While residuals are considered as purely random and uncorrelated, 
they often contain interactions with other variables, undetected auto-
correlations and nonlinear dependencies. Deep learning models, such as 
LSTM, are capable of extracting and learning these non-linear patterns 
using memory cells and gates. They remember patterns from the past, 
even a random spike in the data, to make predictions. Moreover, 
influence of external factors, such as the applied current density in this 
13 
case, is taken by the LSTM model to predict the residual part. Therefore, 
these data-driven models are capable to make improvised time-based 
voltage predictions.

4. Conclusions

The effect of four pre-treatment procedures on the performance 
of PEMEC was investigated through three different machine-learning 
methods: KNN, XGB, and ANN. A PEMEC comprising of Nafion N115 
membrane with an active area of 4.4 × 4.4 cm2 was used to generate the 
data required for model development. Since the focus of this work is to 
investigate the effect of conditioning procedures on cell performance, 
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the operating conditions and other parameters were held constant. The 
model performance was calibrated using the RMSE and R2 performance 
metrics. The main conclusions drawn are as follows:

(1) All three models showed good performance in predicting the cell 
voltage for varying current densities and pre-treatment proce-
dures. However, deviations in model performance for impedance 
predictions were noted. The KNN model showcased variance by 
performing well on the training data and over-fitting on the test 
data. Lack of sufficient EIS data hinders the performance of ANN 
model for impedance predictions. The XGB model showed an 
overall better performance for both cell voltage and impedance.

(2) Ex-situ conditioning leads to membrane swelling along both
through plane and in-plane directions. Therefore, it showcases 
lower performance and higher ohmic resistance when compared 
to the reference scenario. Both in-situ/acids and in-situ/water(90◦)
activation procedures showed lower ohmic resistances and cell 
voltage when compared against the base case.

(3) A strong alignment between machine learning predictions and 
experimental results is observed, as SHAP analysis identified in-
situ/water(90◦) activation as the most effective, followed by in-
situ/acids, reference and ex-situ for short-run conditioning opera-
tion. This ranking is consistent with experimental findings [11].

(4) Time series predictions from the LSTM model showed good agree-
ment with experimental data. Unlike conventional forecasting 
techniques, LSTM is capable of making accurate predictions of the
residual component of the time series.

Selecting suitable conditioning protocol is essential not only for obtain-
ing optimal cell performance, but also to prolong electrolyzer health. 
The effect of certain pre-treatment condition is also depends on the 
duration of time-period considered. For short-term observations, we 
noticed that thermally activated MEAs perform slightly better than 
those activated chemically. However, from the stability analysis it 
is evident that in-situ/acids activation outperforms in-situ/water(90◦)
activation. In this context, data-driven models play a crucial role in 
identifying the optimal conditioning procedures, thereby minimizing 
both time and experimental costs.
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