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HIGHLIGHTS

« Introduced MEA activation as a feature in data-driven modeling of PEMEC.

+ Combined data-driven models with SHAP for ranking MEA activation procedures.

+ On the short run, in-situ/water 90 °C activation strategy showcases better performance.
» The LSTM model shows a good comparison with experimental data for cell stability .

ARTICLE INFO ABSTRACT
Keywords: Pre-treatment of the proton exchange membrane water electrolyzers is a crucial procedure performed prior to
Machine learning its regular operation. These procedures help in catalyst activation and membrane saturation, thereby, ensuring
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its optimal performance. In this study, we use machine learning to investigate the impact of three distinct
activation procedures on the cell performance and stability. The data set necessary to develop the surrogate

models was obtained from a lab scale PEM electrolyzer cell. After evaluating the performance of the three
tested models and validating them with experimental data, extreme gradient boosting is selected as the to
perform parametric analysis. The modeling predictions reveal that the activation procedures mainly impact
the ohmic resistance at the beginning of the cell life. These observations were further corroborated using
through sensitivity analysis performed through an explainable artificial intelligence technique. Furthermore,
data-driven time-series forecasting analysis to predict cell stability for different activation procedures showed
a good comparison between experimental data and model predictions.

1. Introduction

Decarbonizing the energy landscape is vital not only for environ-
mental preservation but also for long-term economic stability. This
imperative has led to global efforts in the pursuit of green energy
technologies [1]. In this endeavor, proton exchange membrane (PEM)
water electrolysis has emerged as a leading technology for producing
green hydrogen. PEM electrolyzers produce high purity hydrogen, op-
erate at high current densities, and their modular design facilitates
integration with existing transport and power grid infrastructure [2].
The central unit of these systems is the membrane electrode assem-
bly (MEA), whose core functionalities include facilitating the electro-
chemical water splitting reactions, separation of gaseous products, and
enabling proton and electron transport. As the critical electrochemical
and transport processes occur in the MEA, it dictates the efficiency
and long-term operational life of the cell. To improve the system’s
stability, reproducibility and performance before regular operation, the
MEA is subjected to activation procedures during which current or
thermal protocols are applied. These procedures [3] are also important
in preventing accelerated degradation.

Before being deployed, PEMECs undergo activation procedures that
enhance their performance. The duration of these activation procedures
can range from less than an hour to over 20 h, even for identical
materials. Understanding why these activation processes enhance the
performance of PEM based electrochemical systems is both impor-
tant and intriguing. During the manufacturing process of membranes,
cations such as Fe?*, Ni?* and Cr?>* may contaminate the membrane
and inhibit cell performance [4]. They do this by attacking the poly-
mer bands of the membrane, resulting in mechanical and chemical
destabilization. Some of these also react with protons to block and
decrease protonic conductivity. The membrane is also exposed to dif-
ferent temperature and humidity conditions during its manufacturing
process. Both these factors influence the water uptake of the membrane,
thereby, causing varying swelling behaviors and changes in structural
morphology, which in turn influence the proton conductivity, before
regular cell operation [5,6]. Some of the catalyst particles are covered
with oxide impurities or may contain solvents, used to prepare the
catalyst paste, filling in the pores of the carbon paper. These factors
effectively reduce the available active electrochemical surface area and
result in poor cell performance. As such, activation procedures [7,
8] help in optimizing cell start-up by activating the catalyst layer,
improving membrane water saturation and through the removal of
impurities.

Although conditioning procedures for PEMECs are well established
[3], comparatively few comprehensive studies have investigated their
effects relative to PEMFCs. A pre-conditioning procedure, in which
the cell was subjected to a constant current density for 24 h was
carried out to improve membrane hydration and stabilize the oxidation
state of catalysts [9]. To standardize testing protocols and enable
reliable comparison of PEM water electrolyzers across five laboratories,
identical test cells, materials and operating protocols were used. For a
given operating temperature and flow rate, a pre-conditioning protocol
was carried out until the variation in current density was less than
1%. Across the different laboratories, a low maximum deviation in

cell voltage was observed for different operating temperatures. Elec-
trochemical characterization and in-situ visualization revealed that
conditioning procedures increased the number of reaction sites [10].
Electrochemical impedance spectra (EIS) measurements revealed that
both ohmic and overpotential losses decreased after conditioning. More
recently, the impact of ex-situ and two different in-situ conditioning
procedures was investigated to evaluate their effect on short-term cell
performance [11]. While experiments provide critical information on
the impact of conditioning strategies through electrochemical charac-
terization techniques, there has been a recent shift towards integrating
data-driven models with experimental data. To scale-up these systems
for commercial utilization and to perform real-time monitoring, data-
driven models have emerged as an essential tool for enabling predictive
analytics, control, and optimization, thereby bridging the gap between
laboratory-scale experimentation and industrial deployment [12-14].
In the domain of PEMECs, machine learning has been predomi-
nantly deployed to screen electrocatalysts [15-17]. Unlike PEMFCs,
where substantial work [18] has been conducted on applying data-
driven models for performance prediction and system-level optimiza-
tion across various scales, similar efforts for PEMECs remain in their
early stages of development [19,20]. Images obtained from X-ray based
tomography of the anode PTL of PEMEC were used as training data
to develop a machine model that predicted the oxygen content in the
PTL [21]. The k-nearest neighbors (KNN) and decision tree regression
models were used to optimize the design of PEMECs by focusing on
selecting the best flow-field pattern which maximizes hydrogen pro-
duction efficiency [22]. By using a combination of datasets generated
from in-house experiments and literature, the authors demonstrated for
the first time a data-driven framework for efficient hardware selection
(flow field, catalyst type, membrane type, number of cells) for PEM
water electrolyzers. Subsequently, design parameters were proposed
for PEM electrolyzers with large scale hydrogen production rates rang-
ing from 50-300 mL/min. A database consisting of data from 789
experiments extracted from 30 publications in the last 10 years was
generated to find the most critical parameters influencing the perfor-
mance of PEMECs [23]. By using a combination of ML based methods
such as SHAP, KNN and Bayesian optimization, operating temperature,
catalyst loading, ionomer content, support materials for anode and
cathode, and appropriate pore structure of PTL were prescribed as
the critical parameters. Similar data-driven cell design optimization
was performed using polynomial regression [14]. A good agreement
on the hydrogen production rate was observed between custom made
cell using the parameters predicted by the data-driven model and
the model’s prediction. More recently, a data-driven methodology was
proposed [24] to predict degradation trends of PEMECs by utilizing
operational data. Ozdemir and Pektezel [25] investigated the effect
of cell voltage, temperature, torque and flowrate on cell performance
using machine learning algorithms from experimental data. They found
that support vector machines outperformed the performance of random
forest and multi-layer perceptron algorithms to predict current density
and hydrogen flowrate. A low MAE of 0.006 and 0.0317 was noted
for current density prediction on training and test data, respectively.
The authors have also recently investigated PEMEC performance using
synthetic data generated from numerical simulations [26]. Among the
four different ML models they used, SVM demonstrated the highest
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Nomenclature

ANN Artificial Neural Network

CL Catalyst Layer

CPE-T Constant phase element - Exponent (P)

CPE-T Constant phase element - Magnitude (T)

HER Hydrogen Evolution Reaction

KNN K Nearest Neighbors

LSTM Long-Short Term Memory

MAE Mean Absolute Error

MAE Mean absolute error

MAPE Mean Absolute Percentage Error

MEA Membrane Electrode Assembly

ML Machine Learning

MSE Mean Square Error

OER Oxygen Evolution Reaction

PEM Proton Exchange Membrane

PEMEC Proton Exchange Membrane Electrolytic
Cell

PEMFC Proton Exchange Membrane Fuel Cell

PTL Porous Transport Layer

R? Coefficient of determination

RCT Charge transfer resistance

RMSE Root Mean Square Error

Rs Solution resistance

SHAP Shapely Additive Explanations

SR Split Ratio

SVM Support vector machines

XGB Extreme Gradient Boosting

predictive performance with RMSE values of 0.0108 and 0.0371 on
training and testing data, respectively.

From the above literature, it is evident that research in the direction
of integrating PEMEC experiments and machine learning has been
predominantly focused on optimizing material properties, cell design
and operating conditions. A critical parameter, cell activation, which
influences membrane hydration and catalyst activation, has not been
considered yet as a predictive feature in these data-driven investiga-
tions. Additionally, it is imperative for economical feasibility to predict
the stability of the electrolyzer when operating under these different
conditioning protocols. This would assist in selecting a conditioning
procedure that not only shows maximal short-term performance, but
is also suitable for long term sustained efficiency. This study aims
to fill these gaps of knowledge. Firstly, we build upon experimental
data obtained from lab-scale PEMEC for three different conditioning
strategies and develop data driven models that include conditioning
as a feature. This allows the model to predict cell performance by
considering the influence of MEA’s initial treatment. Secondly, using
SHAP as an explainable AI technique, we investigate which among
the three pre-treatment procedures leads to the best cell performance.
Finally, we model the stability of PEMEC using a database generated for
over 200 h of cell operation. The temporal dependencies were captured
using an LSTM. With its gated architecture, the LSTM circumvents the
vanishing and exploding gradient problem encountered in conventional
recurrent neural networks.

The paper is organized as follows: We begin with a brief description
of the four different ML techniques 1(b) used for our work in Section 2.
Data acquisition and information on data pre-processing are also pro-
vided in this section. Results are presented and discussed in Section 3
followed by conclusions in Section 4
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2. Methodology
2.1. Data curation

The data were obtained from four in-house built single cells with
commercial HYDRion MEAs purchased from Ion Power GmbH consist-
ing of Nafion N115 membrane. The anode catalyst layer comprised
iridium oxide with a loading of 1.0 mg/cm?, while the cathode com-
prised platinum with a loading of 0.3 mg/cm?. The active area of the
MEA is 4.4 x 4.4 cm?, which is larger than the active MEA area of 9 cm?
used in a recent study [25]. A 250 pm-thick CURRENTO 2GDL10N-0.25
porous transport layer, with a platinum coating thickness of 0.25 pm
on both sides, was used as the anode-side PTL. A Toray carbon paper
(TGP-H-60) was used as the cathode PTL. The bipolar plates were
fabricated from titanium grade 2 and featured a parallel flow-field
design. The anode and cathode sides of these plates were coated with
platinum (2.5 pm) and gold (2.5 pm), respectively. Temperature control
was achieved by heating each side of the cell with a pair of heating
rods, regulated by a single temperature sensor on each side. The cells
were operated in test stands with high-purity water supplied at a flow
rate of 0.05 L/min. After pre-treatment, the operating temperature
was set to 60 °C. Further information on the experimental setup and
corresponding test stations is provided in [11].

The input features consisted of applied current density, frequency
and amplitude. A new feature indicating the type of pre-treatment
conditioning was added to the list of features. One-hot encoding [27]
was applied to the conditioning feature to convert it into numerical
data. The output variables were the cell voltage, the real and imaginary
components of impedance. Both features and output variables were
scaled using min-max scaling. The input features and the measured
output variables are listed in Table 1. The range along which the input
parameters were varied and the output variables were measured are
also provided in this table. Furthermore, the description of each acti-
vation strategy is shown in Fig. 1. For every experiment, the data were
logged at an interval of one second. From each of the four datasets, the
data corresponding to the pre-treatment procedure was removed. Four
different current densities: 0.5, 1.0, 1.5, and 2.0 A/cm? were applied in
ascending order for 12 h each. During these 12 h of operation at each
current density, three polarization curves and impedance spectroscopy
measurements were carried out. To prevent any outliers arising from
spurious measurements, only data with voltage greater than or equal to
1.4 V were considered, as this corresponds to the open-circuit voltage.
Screening of missing values was performed and corresponding cells
were removed from the database. After cleaning and combining the
data from the four cell experiments, the entire database constituted of
133558 data points. The database exhibits high diversity with the cat-
egorical feature, pre-treatment being evenly distributed for all the four
considered cases with the Shannon entropy measured at 1.997 bits out
of 2. Similarly, with a standard deviation of 0.62 A/cm? and coefficient
of variation of 1.03, the applied current density shows heterogeneity
among the samples. In data-driven modeling, it is customary to split
the data into training and test sets. Machine learning algorithms use
the training data to learn the relationship between the input features
and output variables. The test data are then used to evaluate the
model’s performance in predicting outcomes on this unseen data set.
We have used a split ratio of 8:2 to randomly divide the experimental
database into training and test sets. A small dataset comprising of one
polarization curve and impedance measurements taken at 1.0 A/cm?
was set aside to validate the trained models.

For predicting the electrolyzer stability, a separate database con-
sisting of 200 h of operational data is recorded for each activation
procedure. The temporal prediction for cell voltage employing the
LSTM model is made using this database.

Before we proceed with building machine learning models, it is im-
portant to check if the type of conditioning strategy has any significant
influence on the cell voltage. Statistical significance tests like analysis
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Table 1
Range of measured variables provided to the data-driven model.
Parameters Type Unit Range of values
Current density Input A/cm? [0.0-2.0]
Frequency Input Hz [0.1-5 x 10°]
Activation Input (categorical) - ex-situ, in-situ/water(60 °C),
in-situ/acids, in-situ/water(90 °C)
Voltage Output \% [1.4-1.93]
Impedance (Real) Output mQ [7.5-20.48]
Impedance (Imaginary) Output mQ [0-3.85]

(a) /
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strategy

MEA treated before cell assembly (ex-situ) by soaking
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Fig. 1. (a) Description of the different MEA activation strategies investigated in this study. The in-situ/water (60 °C) is the reference activation strategy case
against which the other pre-treatments methods were compared. (b) Schematic representation of the working principle of the employed machine learning models.

of variance (ANOVA) serve the important purpose of screening input
features through evidence and help avoid feeding irrelevant variables
or noise into the machine learning model. Since the focus of this study
is to investigate the effect of conditioning on cell performance, we use
ANOVA to verify its statistical significance. Table 2 shows the results
of the one-way ANOVA performed on the cell voltage with the type
of conditioning strategy as the categorical feature. With a p-value less
than 0.001 and F(3, 133554) = 11.81, the ANOVA reveals that the type
of MEA conditioning has a significant effect on cell voltage. Therefore,
it is important to consider it as a input feature for ML modeling. To
confirm further, we performed a pariwise comparison of the different
conditioning strategies using the Tukey HSD statistical significance
test. Table 3 presents these comparisons with adjusted p-values and

confidence intervals. The combinations reporting adjusted p-values less
than 0.05 reject the null hypothesis. Based on the adjusted p-values
and confidence intervals, we observe that ex-situ conditioning results
in higher voltages compared to the in-situ methods. Moreover, the
mean voltages for the base in-situ case are higher than the in-situ/water
(90 °C) MEA conditioning. These results reiterate that the type of
conditioning has an statistically significant effect on cell voltage.

2.2. K-Nearest Neighbors (KNN)
K-nearest neighbors [28] is a non-parametric machine learning

algorithm which is employed to make regression predictions. It account
for the values of near of nearby data points to make a prediction.
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Table 2

One-way ANOVA results for the effect of conditioning on cell voltage.
Source Sum of squares df F p-value
Pre-treatment 0.703 3 11.81 <0.001
Residual 2649.82 133554 - -

Table 3

Tukey HSD pairwise comparisons of voltage (Ewe) for different pre-treatment
types. Significant differences (p < 0.05) are indicated.

Group 1 Group 2 p-adj Lower CI Upper CI
ex-situ in-situ/acids 0.007 —0.0063 —0.0007
ex-situ in-situ/water(60°) 0.000 —0.0083 —0.0029
ex-situ in-situ/water(90°) 0.965 —0.0033 0.0023
in-situ/acids in-situ/water(60°) 0.223 —0.0049 0.0007
in-situ/acids in-situ/water(90°) 0.042 0.0001 0.0059
in-situ/water(60°) in-situ/water(90°) 0.000 0.0022 0.0079

Mathematically, the prediction made by KNN is expressed as:

g1 _ 1
g k x,e%(x) . ( )
where § is the prediction made by the model, k is the number of nearest
neighbors, x; are the data points which belong to the set N, x is the
input where we want to predict the output and y; is the target values
corresponding to x;. The hyperparameter to select for this model is the
number of nearest neighbors (k). The algorithm proceeds with selecting
the nearest k number of points, based on their euclidean distance with
the input x. The final output prediction is made by taking the average
of the target values at these k points from the training database.

2.3. Extreme gradient boosting (XGB)

XGBoost (eXtreme Gradient Boosting) is a machine learning tech-
nique which uses an ensemble of decision trees built in a sequential
manner for solving both regression and classification problems. The
working principle of a single decision tree involves recursively split-
ting the training dataset into subsets. This splitting is done based on
selecting a particular input feature and its value such that it creates a
homogeneous subset. This splitting process continues until the tree has
reached a maximum depth or has a minimum number of samples in the
resulting node. XGB operates by iteratively building a weak decision
tree to predict the negative gradient of the loss function (squared
error), which is the basis of the gradient boosting algorithm. Each of
these decision trees is sequentially fit to minimize the residuals of the
preceding trees.

2.4. Artificial neural network (ANN)

Inspired by the architecture and functionality of biological neurons,
artificial neural networks are computational models which are capable
of accurately predicting regression problems. The basic working unit of
ANN is the neural node or neuron. Neurons are mathematical operators,
which receive inputs and transmit output signals known as activations.
A group of neurons are stacked together to form a layer. The first layer
represents the input layer wherein, each node transmits individual in-
put parameters. Similarly, the last layer is the output layer constituting
the nodes which predict the target variables evaluated by the model.
Interim layers are known as hidden layers which process and extract
features from data. The information flow occurs from the input to the
output layer through the hidden layers. Further details of XGB and ANN
methods have been outlined in [19,20].

2.5. Long-short term memory (LSTM) model for forecasting

LSTM [29] are specialized version of recurrent neural networks
(RNN) which overcome the problem of vanishing and exploding gra-
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dients, inherent to RNNs. In order to overcome these limitations, the
LSTM networks have a gated architecture and memory cells which
control the flow of information. These gates assist LSTM network in
selectively retaining or discarding information. The LSTM architecture
constitutes of the following components:

« Cell state: This component carries the information about the long
term history of the time series. The cell state influences the output
of the LSTM unit at the current time step.

Forget gate: It controls the amount of the previous long-term
memory that needs to be retained for the current time step. It
employs a sigmoid function and is mathematically expressed as:

fi=oWyelh 1. x]1+by) @

Input gate: This gate has two components comprising of a tanh
layer and sigmoid layer. These two components determine the
new long-term memory and the amount of this new long term
memory that contributes to the information passed by the forget
gate, respectively.

i, =o(Wi.lh_;,x,]+b;) 3)
C, = o(We.lhy_1,x,1+ bc) (&)
C=(f,xC_)+ (i, xC) (5)

Output gate: The last gate decides the output of the LSTM unit
using the current cell state.

o, = O'(I/Vo-[ht—l,xr] +b,) ®)
h; = o; X tanh(C,) @)

In the above mentioned equations, W, and b, correspond to the weights
and biases of different gates (x : f,i,C and o). A number of LSTM
units could be stacked to form a layer, and such different layers can
placed sequentially to allow the passage of information. To perform
the stability analysis, we have used two layers having 50 and 25 LSTM
units, respectively.

3. Results and discussion

We present the results by first assessing the performance of the three
machine learning models using residual plots. We then follow up by
validating these models using experimental data. We then perform a
parametric analysis using the model which performs best on all the
target variables.

3.1. Model performance

Residual plots allow us to visually infer the error distribution and
patterns generated from the predictions made by the ML model. Fig. 2
illustrates the residual plots for KNN, XGB and ANN machine learning
models. Each of these models was trained on three separate target
variables, namely, cell voltage (top row), real part (middle row) and the
negative imaginary part of impedance (bottom row). The search range
and the values of the final selected hyperparameters for the trained
ML models are provided in Table 4. Mathematically, the residual is
defined as the difference between the experimental value and model
prediction. For instance, the residual plots in the middle row show
the accuracy of the three models in predicting the real component
of impedance when compared against the actual experimental data.
While cell voltage provides insights into the overall efficiency of the
cell, impedance measurements shed light in segregating the different
overlapping processes, such as electrode kinetics, ohmic resistance and
mass transfer losses occurring inside the system. The residuals obtained
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Table 4
Hyperparameters and search range for each machine learning model.
Model Hyperparameter Search range Selected values (Voltage, Re(Z) and -Im(Z))
KNN n_neighbors [3,8,11,14] 3, 8 and 8
XGB n_estimators [100-800] 300, 800 and 800
learning_rate [0.05-0.20] 0.015, 0.005 and 0.005
No. of hidden layers [2-4] 4, 3 and 4
ANN No. of hidden units [20-100] [100-80-60-30], [60-40-20] and [100-80-60-30]

learning rate

[0.0001-0.01]

0.00025, 0.001 and 0.00015
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Fig. 2. Residual plots showing the comparison between the predicted current densities (top row), real (middle row) and imaginary (bottom row) components
of impedance with those obtained from experimental data. The model’s performance on the training and test set are shown in each plot by the RMSE and R?
values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

from the training and testing datasets are indicated using different
colors. Furthermore, the root mean square error (RMSE) and coefficient
of determination (R?) are used to quantify the performance of the
machine learning models. These metrics are defined as follows:

RMSE = ®

n
1 o
;Z{(y, - 9)?

R=1— %Z;’:l(yj_yj)z ©
PO
where n denotes the number of samples, y; represents the ground truth
obtained from the experimental data, § denotes the model prediction
and y is the average value of y;.
From Fig. 2 (top row), we observe that the residual distribution
across the entire range of cell voltage is similar for all the three tested

models. The residuals for both training and test data are within 0.02
V for KNN and XGB models. Some outliers, especially for the test data,
are observed for the ANN model, for which the residuals reach as large
as 0.06 V. The KNN model shows the best performance on the training
data with RMSE = 0.0026, whereas for the unseen test data, XGB shows
a slightly better performance with RMSE = 0.0031. All the models have
R? greater than 0.999, indicating good model performance in predicting
voltage.

While voltage prediction is directly linked to applied current den-
sity, electrochemical impedance spectroscopy (EIS) is a complex valued
variable that is frequency dependent. Several system parameters such
as membrane resistance, double-layer capacitance and diffusion, which
represent various processes transpiring within the system, influence
impedance. These factors impose challenges in modeling impedance
accurately. We infer this behavior from the distribution of residuals
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Comparison of methods with performance metrics on Voltage, real (Re(Z)), and imaginary (-Im(Z)) components

of impedance on the test data.

Method Split type Voltage Re(Z) -Im(Z)
R? RMSE R? RMSE R? RMSE
KNN Random 0.999 3.0 x 1073 0.994 2.11 x 107* 0.983 1.15 x 1074
Grouped 0.975 2.3 x 1072 0.802 1.3 x 1073 0.953 1.91 x 1074
XGB Random 0.982 1.84 x 1072 0.995 1.76 x 107 0.994 6.81 x 1075
Grouped 0.974 2.43 x 1072 0.722 1.54 x 1073 0.959 1.79 x 1074
ANN Random 0.999 3.52 x 1073 0.996 1.63 x 104 0.994 6.99 x 1075
Grouped 0.963 2.87 x 1072 0.743 1.48 x 1073 0.714 4.74 x 10™*

of the real (middle row) and imaginary (bottom row) components of
impedance shown in Fig. 2. The KNN model shows an ideal fit for both
Re(Z) and Im(Z) on the training data, with RMSE = 5.3 x 1077 and
1.33 x 1077 for the training and test data, respectively. However, the
model’s performance on the test data is marked by a pattern which is
characterized by an increase in the spread of residuals as the applied
frequency increases. This pattern is also observed for XGB and ANN
models, with the residuals of Re(Z) for the ANN model showing a
wavy pattern on the test data. The non-constant variance of residuals
for impedance predictions indicates heteroskedasticity in the models.
While the KNN model exhibits high variance due to overfitting the test
data, the ANN model is characterized by a large number of outliers
on the data for Im(Z). Although the RMSE values on the test data
for both components of impedance indicate that ANN model performs
slightly better than XGB, ANN model also showcases a higher degree
of heteroskedasticity compared to XGB. For Re(Z), XGB model shows
a lower variance in residuals when compared to the ANN model. In
general, we observe that modeling the capacitive part (imaginary) of
impedance is challenging when compared to the resistive component.
Therefore, among the three tested machine learning models, the XGB
model shows overall better performance for voltage and impedance
prediction.

The model performance shown so far is based on random splitting
of the database into training and testing data sets. Random splitting
ensures that there is good representation of all feature values, both
numerical and categorical features, in both datasets. This provides
insights into the overall fitting ability of the models. However, as we are
using the type of MEA activation as an input feature, the chances of data
leakage may arise if the same specific activation type is present in both
the training and test datasets. Data leakage occurs when measurements
from the same experiment appear in both the training and test datasets.
To investigate the occurrence of data leakage further, Table 5 shows the
R? and RMSE performance metrics for all the three tested models under
random and grouped splitting, with the test data under consideration.
The group splitting was performed such that all samples from a specific
activation type are kept only in the test dataset, while the training
dataset consists of samples from the remaining activation type. We
observe that R? and RMSE for voltage predictions show a slight drop
when using grouped splitting compared to random splitting. This is a
general observation, as the models are making predictions on unseen
categorical features, which reflects their generalization ability. A sharp
drop in the R? values (0.2-0.3) are noted for RE(Z) prediction when
modeled under grouped splitting. KNN performs slightly better and
XGB and ANN models. For Im(Z) predictions, ANN model exhibits
overfitting as a large drop from 0.994 to 0.714 is observed when the
splitting type is changed from random to group. The metrics shown
in Table 5 indicate that the voltage predictions made by the models
are relatively stable with respect to data leakage when compared to
predicting impedance.

3.2. Model validation

The residuals and performance metrics give us insights into the
overall performance of the trained models. To further elucidate the

model performance quantitatively, we compare their predictions with
experimental data for (a) thermal and (b) chemical conditioning pro-
cedures as shown in Fig. 3. Polarization curves and Nyquist plots
measured at a current density of 1 A/cm? are used to draw the com-
parison. For the thermal conditioning procedure, the experimentally
obtained polarization curve is in good agreement with all the three
models as illustrated in Fig. 3(a). The Nyquist plot on the other hand
exemplifies the differences in model predictions from experimental
measurements. The fitting values obtained from the equivalent circuit
model are shown in Table 6. The ANN model shows larger deviations
with experimental data when compared to XGB and KNN models. For
the thermal pre-treatment, the ANN model under predicts the ohmic
resistance and continues this trend across the entire range of applied
frequencies, marked by a shift in the Nyquist plot towards the left side
of the experimental data. Predictions made by the KNN model show
good agreement with impedance measurements in the high-to-medium
frequency range. However, we notice that at low frequencies, it exhibits
large deviations from experimental data (Re(Z) 9.0). Both the ohmic
and charge transfer resistances are captured accurately by the XGB
model. We observe that for the entire range of applied frequencies, the
predictions made by the XGB model are close to the experimental data,
albeit showing a slight overprediction in the capacitive component of
impedance at medium frequencies. Fig. 3(b) elucidates the comparison
between ML model predictions and experimental measurements for the
case of applying chemical conditioning to the MEA. Similar to our
earlier observation for thermal conditioning, the ML models show good
agreement with experimental data for the polarization curve. Predic-
tions made by both KNN and XGB models agree well with experimental
measurements of impedance for chemical conditioning. However, in
this case the ANN model shows slight overprediction of the ohmic
and charge transfer resistances as it shifts slightly to the right of the
experimental Nyquist plot.

From the residual distributions on the impedance data shown in
Fig. 2, we conclude that the KNN model fits well to the training data
and under performs when subjected to test data. Even though the
model shows good agreement with experimental measurements in Fig.
3, we observe that the model tends to memorize the training data
due to its instance based learning approach. The predictions of the
model are highly dependent on the local structure of the data. This
is shown as the model predicts noisy impedance data at low frequency
for chemical conditioning, as noticed in Fig. 3(b). The lack of regular-
ization techniques makes KNN prone to over-fitting. Neural networks
on the other hand are designed with a lot of parameters which enable
them to learn the complex underlying relationship between the input
features and the components of impedance measurements. In order to
establish this relationship accurately, ANNs require a large amount of
training data. Especially for impedance measurements, where different
electrochemical processes take place across a wide range of frequencies,
the model can overfit or only capture the dominant mechanism when
trained on a smaller data set. These factors may attribute to the under
and over prediction of the ANN model on the experimental impedance
measurements shown in Fig. 3(a) and (b), respectively. In terms of
overall accuracy and effectively capturing the trends in experimental
data, XGB has demonstrated better performance. Therefore, we select
this model to proceed ahead with parametric analysis.
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Fig. 3. Comparison between experimental measurements and model prediction through polarization curve and Nyquist plot for MEAs pre-treated with (a)
deionized water at 90 °C and (b) acidic solutions. The impedance measurements were made at a current density of 1.0 A/cm?. Additionally, it is to be noted
that as the applied frequency increases, the real component of impedance decreases.

Table 6
Equivalent circuit model fitting parameters for different ML models corresponding to the Nyquist plot in Fig. 3.
Pre-treatment Model Rs (Q) RCT (Q) CPE-T CPE-P
Value Error% Value Error% Value Error% Value Error%
Experiment 7.528 0.20 1.755 1.45 0.0076 7.74 0.7439 1.92
Thermal KNN 7.500 0.38 1.719 2.67 0.0067 14.72 0.7599 3.53
XGB 7.463 0.16 1.855 1.14 0.0095 5.78 0.7182 1.52
ANN 7.340 0.21 1.676 1.55 0.0074 8.43 0.7624 2.04
Experiment 7.832 0.12 1.682 1.19 0.0088 6.19 0.7542 1.51
Chemical KNN 7.834 0.15 1.679 1.40 0.0091 7.25 0.7538 1.78
XGB 7.921 0.15 1.666 1.46 0.0092 7.56 0.7389 1.87
ANN 7.813 0.16 1.695 1.47 0.0093 7.57 0.7409 1.88

3.3. Effect of activation strategies

We now compare the influence of ex-situ, in-situ/acids and in-
situ/water (90 °C) activation procedures against the reference case using
electrochemical characterization. Polarization curves and Nyquist plots
are used to elucidate the comparison among these protocols. All the
results presented in this section are obtained from the XGB model. In
this study, four different MEA activation procedures were carried out
to evaluate their influence on PEMEC performance. One of these four
pre-treatment strategies is selected as the reference case, against which
other cases are compared. For the reference conditioning procedure,
the MEA was hydrated with deionized water at 60 °C for 12 h. This
procedure was performed after the MEA had been assembled in the
cell. We now discuss the impact of other three activation procedures
on cell performance and compare them with the reference case.

3.3.1. Mechanical impact

For the ex-situ activation procedure, the MEA was first hydrated
with deionized water at 60 °C for 12 h (ex-situ) and then assembled
into the cell in a wet state. This highlights the effect of membrane

swelling, due to hydration, on the cell performance. Fig. 4(a) illustrates
the comparison between ex-situ and reference conditioning procedures
through polarization curves. For lower current densities (0-0.5 A/cm?),
we do not notice any substantial differences between the pre-treatment
procedures. As the current density increases, we observe higher cell
voltage values for ex-situ activation when compared to reference sce-
nario. It can be seen from the inset figure that this difference in cell
voltage values increases, especially at higher current densities. For
example, a difference of 28.5 mV is observed at an applied current
density of 2.0 A/cm? between these two conditioning procedures. The
influence of different current densities on the impedance spectra for
mechanical impact is shown through the Nyquist plot in Fig. 4(b). It
is important to note that certain selected current densities (0.75, 1.25
and 1.75 A/cm?) were not present in the original training data. This
is intended to showcase the model’s capability in making predictions
for parameter values not included in the training database. Therefore,
we use the developed data-driven model to make these predictions.
The ohmic resistance is obtained from the high frequency limit of
the impedance spectra. We notice a negligible change of 0.34 mQ in
ohmic resistance as current density varies from 2.0 to 0.50 A/cm?. The
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Fig. 4. Electrochemical performance comparison between reference and ex-situ activation. (a) Polarization curves highlighting performance reduction due to
mechanical impact. (b) Nyquist plots at different current densities (0.5-2.0 A/cm?) for ex-situ activation showcasing the changes in ohmic (R,) and charge
transfer resistance. (c¢) Comparison of Nyquist plots between reference and ex-situ activation, illustrating increased R, due to mechanical impact.
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Fig. 5. Electrochemical performance comparison between reference and in-situ/acids activation. (a) Polarization curves highlighting performance improvement
due to chemical impact. (b) Nyquist plots at different current densities (0.5-2.0 A/cm?) for in-situ/acids activation showcasing the changes in ohmic (R,,) and
charge transfer resistance. (¢) Comparison of Nyquist plots between reference and in-situ/acids conditioning, illustrating reduced R, due to chemical impact.

charge transfer resistance, obtained from the low frequency intercept,
decreases as current density increases. This is attributed to the fact that
as current density increases, the over potential increases, leading to an
increase in the reaction driving force. As a result, the charge transfer
resistance decreases. To exemplify the influence of mechanical impact
on cell performance, we compare the Nyquist plots obtained at current
density of 1.75 A/cm? in Fig. 4(c). The ohmic resistance for ex-situ
and reference were found to be 8.79 mQ and 8.16 mQ, respectively.
Similarly, the charge transfer resistance is increased from 9.14 mQ to
9.96 mQ, when the MEA underwent mechanical impact. These results
indicate that ex-situ activation results in reduced cell performance.

3.3.2. Chemical impact

For in-situ/acids activation, the MEA was first assembled into the
cell (in-situ) and treated with a continuous supply of hydrogen peroxide
(H,0,) for 1 h. This procedure was then followed up by a consecutive
supply of deionized water and 0.5 mol/L sulphuric acid (H,SO,) for an
interval of 1 h each. Finally, the MEA was treated with deionized water
at 60 °C for 12 h to conclude the in-situ/acids activation procedure.
Fig. 5(a) illustrates the effect of in-situ/acids activation against reference
on the polarization curve. Unlike the previous case shown in Fig.
4(a), we observe a slight improvement (in the order of millivolts)
in voltage losses when the MEA undergoes pre-treatment chemically.
This improvement is further exemplified from the inset shown in Fig.
5(a). Fig. 5(b) shows the effect of current density on the ohmic and
charge transfer resistance for chemically treated MEA. A negligible
change of 0.1 mQ in ohmic resistance is observed when the current
density increases from 2.0-0.5 A/cm?. This indicates a lower variance
in ohmic resistance for in-situ/acids activation when compared to ex-
situ pre-treatment discussed above. However, the evolution of charge

transfer resistance follows a similar trend, decreasing as current density
increases. A 27.4% increase in charge transfer resistance is observed
when the current density varies from 0.5-2.0 A/cm?. Chemical pre-
treatment of the MEA leads to reduction in the ohmic resistance,
thereby, facilitating better mobility of ions across the membrane. This
is inferred from the reduction of R, from 8.16 mQ for in-situ/acids
activation to 7.75 mQ for the reference case, as shown in Fig. 5(c). Along
the same lines, the charge transfer resistance also reduces from 9.14 mQ
to 8.76 mQ when the MEA is subjected to chemical pre-treatment.

3.3.3. Thermal impact

For the last conditioning procedure, the MEA was assembled in the
cell (in-situ) and deionized water at 90 °C was supplied through the
cell for 12 h. The difference between this procedure and the reference
conditioning procedure lies in the temperature of the deionized water
used during pre-treatment. During cell operation, measurements for all
the conditioning procedures were made with water at 60 °C. Similar to
the chemical activation procedure, MEA pre-treated with 90 °C shows
improved performance, evidenced by a decrease in cell voltage, as
illustrated from the polarization curve in Fig. 6(a). This reduction in
cell voltage is observed across the range of applied current densities.
Furthermore, the magnitude of this voltage reduction remains nearly
constant across different current densities. For instance, the voltage
differences between the reference and in-situ/water(90 °C) activation
procedures at current densities 0.52 A/cm?, 1.54 A/cm? and 1.95
A/cm? is found to be 14.61 mV, 14.8 mV and 13.78 mV, respectively.
From Fig. 6(b), we observe that R, remains largely unchanged as
the applied current density increases from 0.5-2.0 A/cm?. This maybe
attributed to the fact that after pre-treatment with deionized water
at 90 °C the membrane is fully hydrated, thereby, minimizing the
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Fig. 6. Electrochemical performance comparison between reference and in-situ/water(90 °C) activation. (a) Polarization curves highlighting performance
improvement for thermally activated MEA. (b) Nyquist plots at different current densities (0.5-2.0 A/cm?) for in-situ/water(90 °C) activation showcasing the
changes in ohmic (R,,) and charge transfer resistance. (c) Comparison of Nyquist plots between reference and in-situ/water(90 °C) activation, illustrating reduced

R, for thermal activation.

resistance for movement of H* through the membrane. As the charge
transfer resistance decreases, the current density scales logarithmically
with the overpotential. The impact of in-situ/water(90 °C) activation
in assisting ion transfer through the membrane can be further corrob-
orated from Fig. 6(c), where we observe that a decrease in R, from
8.16 mQ (reference) to 7.14 mQ for an applied current density of 1.75
A/cm?.

3.4. Comparative analysis of conditioning strategies using SHAP

In the preceding section, we compared the electrochemical per-
formance comparison of the three conditioning strategies with that
of the reference case, in which the MEA was hydrated with deion-
ized water at 60 °C for 12 h. While the differences between each of
these conditioning procedures were quantitatively illustrated against
the reference case, an overall comparison between these procedures
is yet to be provided. Moreover, the underlying variations in cell
performance resulting from different conditioning treatments warrant
further conjecture and discussion. We undertake these analysis in this
section using the explainable Al technique known as SHAP.

The SHAP [30] technique is a method based on game theory that
asserts importance values for each input feature that contributes to a
given prediction made by the machine learning model. The SHAP value
indicates the average contribution of a particular feature, across all
possible input parameter combinations, in making model predictions.
This in turn helps us to understand how and why the machine learning
model favors a particular feature over others. Fig. 7(a) shows the
SHAP plot elucidating which among the three conditioning procedures
contributes most to the cell voltage. The x-axis represents the scale for
SHAP values, and each point corresponds to an experimental instance,
indicating the SHAP value for the respectively conditioning experiment.
The ranking of conditioning strategies is based on their average SHAP
values. The scale bar placed on the left of the plot represents the value
of the features. It should be noted the unlike input parameters with
numerical values, such as current density or frequency, categorical
features do not have numerical values. These categorical features are
encoded into numerical format using one-hot encoding. It transforms
categories into binary vectors wherein each category is represented by a
separate column. After performing one-hot-encoding, the single feature
column of pre-treatment type consisting of four cases is transformed
into four columns leading to the formation of three new features.
Each of these four column corresponds to a specific pre-treatment type
and has a binary value of 0 or 1. For instance, when a data point
corresponding to the ex-situ is considered, the ex-situ feature column
has the feature value = 1 and other three columns have the feature
value = 0. In this way, one-hot-encoding transforms categorical features
into binary numerical features. Therefore, each of the four categories
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(including reference) appear separately in Fig. 7(a). A red dot (binary
value = 1) denotes the activation or presence of the corresponding
conditioning process for a given instance, whereas a blue dot (binary
value = 0) signifies its absence. We observe that the ex-situ procedure
has the highest impact on cell voltage. When the conditioning process
is activated, it predominantly has positive SHAP values ranging as far
as 0.05. This indicates that ex-situ activation has a positive correla-
tion with cell voltage, which means, it attributes to an unfavorable
increase in cell voltage. This pre-treatment is followed by the base or
the reference conditioning procedure. Similar to ex-situ activation, it
also shows positive correlation with cell voltage. However, its impact
on cell voltage is lower than that exerted by mechanical impact, as
denoted by its SHAP values. A positive correlation emphasizes the fact
that employing ex-situ activation leads to an increase in cell voltage,
indicating higher voltage losses against the base case. A reversal in
this trend is observed for these two other conditioning procedures. The
SHAP value distribution for the in-situ/acids activation denotes that
it has a negative correlation with cell voltage and the average SHAP
value lower than the base case. Therefore, inline with our observa-
tions from the preceding sections, SHAP analysis also corroborate that
chemically activated MEAs results in overcoming cell voltage losses.
The in-situ/water(90 °C) activation procedure shows relatively better
performance among the tested activation procedures.

From the above discussions, it is evident that ex-situ activation
performs inferior to the base case, whereas the in-situ/acids and in-
situ/water(90 °C) activation exhibit improved performance against the
reference. These observed variations in cell performance could stem
from various underlying factors. For ex-situ pre-treatment, the mem-
brane is hydrated for 12 h ex-situ before it is assembled into the cell.
While for ex-situ and reference cases the membrane is subject with water
at same temperature, the topology of the membrane after hydration
will differ in these two situations. For reference condition [11,31], the
membrane is hydrated with the cell which is confined within the con-
finements of the cell geometry. Therefore, the predominant direction
of membrane swelling would occur along the axial or through-plane
direction. This enhances the contact between the catalyst particles
and the porous PTL layers. However, owing to unrestricted membrane
expansion in the case of ex-situ activation, the membrane undergoes
swelling in both along the axial and through-plane directions. This
expansion along the in-plane direction may hinder the contact between
catalyst particles and PTL, once the membrane is assembled into the
cell. This leads to an increase in R, resulting in lower performance
when compared to the base case. Pre-treatment with H,0, is known to
remove organic impurities from the catalyst layer [32] of MEAs man-
ufactured in industry. This results in improving the contact resistance.
Additionally, pre-treatment with H,SO, enhances protonic conductivity
as H* ions from the acid replace metal cations present in the membrane.
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Fig. 7. (a) Ranking different MEA conditioning procedures using an explainable methodology (SHAP). The ranking is estimated using the developed XGB data-
driven model. (b) Impact of conditioning procedure on cell voltage and ohmic resistance at 2 A/cm? using direct experimental data. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Source: Figure adapted with permission from [11].

As the number of H* ions increases, the protonic conductivity increases.
Therefore, the combined influence of lower interfacial resistance and
enhanced protonic conductivity(in the ionomer/membrane) can be at-
tributed to the improved performance of in-situ/acids activation against
the base case. Finally, it is well established that when Nafion membrane
is hydrated with deionized water at higher temperature, it increases the
hydration state of the membrane [33]. This implies that the number
of water molecules surrounding the sulphonic sites of the membrane
increases. As a result, the ionic conductivity of the membrane increases
during in-situ/water(90 °C) activation procedure leading to improved
cell performance.

At this point, it is pertinent to note that SHAP analysis allows us to
get insights into how the machine learning model makes its decision to
rank the features based on their importance. However, it is important
to verify that the validity of this interpretation is in line with actual
experimental data. This in turn, would prevent us from drawing false
conclusions and imbibe more trust on the model. Fig. 7(b) shows the
comparison between all the conditioning procedures obtained from
experimental measurements [11]. The voltage distribution at a current
density of 2 A/cm? clearly indicates that ex-situ conditioning process
leads to higher cell voltage when compared to in-situ at 60 °C. The
in-situ acids shows better performance and in-situ water at 90° show
better performance than the base case. The strong alignment between
experimental rankings and SHAP analysis strengthens our trust in the
reliability of SHAP interpretations.

From the above discussions, we have seen the impact of three
activation procedures against a reference case. Each of these methods
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has its own advantages and disadvantages. While soaking a membrane
ex-situ [11] enhances water uptake and initial membrane ionic con-
ductivity, excessive swelling hinders catalyst loading accuracy [34].
Our results shown in Fig. 4 confirm this negative effect of mechanical
impact on cell performance. Pre-treatment with chemicals removes or-
ganic/inorganic contaminant and manufacturing impurities. This leads
to improved cell performance [11]. However, further exploration in
terms of evaluating the effectiveness is still warranted by using spec-
troscopic techniques. Similarly, improved cell performance through
thermal pre-treatment is well established in PEMFCs [8]? and more re-
cently in PEMEC [11]. Our model predictions discussed in the previous
section are inline with these observations. Nevertheless, the long term
impact of thermal pre-treatment needs to be further investigated.

3.5. Effect of pre-treatment on electrolyzer stability using LSTM

Probing into the stability of cell voltage for a PEMEC, operating at
a given current density, can reveal insights into the long-term perfor-
mance of the system. It can provide insights into degradation effects,
membrane hydration and catalyst utilization. Consistency in voltage
output over a long-period of time indicates healthy cell operation. We
now discuss the voltage stability analysis and compare the three pre-
treatment procedures. Fig. 8 compares the voltage stability curves for
ex-situ, in-situ/water(90 °C) and in-situ/acids activation procedures. The
cell voltage is recorded at an operating current density of 2 A/cm?
for a time interval from 58 to 206 h. Prior to reaching its current
operating current density, the cell was operated at a series of lower
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Fig. 8. Cell voltage profiles for around 150 h of PEMEC operation at an applied current density of 2 A/cm?. The colored lines and the black dashed lines
represent the experimental data for the three pre-treatment procedures and model predictions, respectively. The background color grading indicates the data used
for training and testing intervals. The performance of the LSTM model is noted through the RSME values. The comparison reveals distinct stability characteristics
across the conditioning strategies. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

current densities, which were gradually increased over time. Moreover,
nearly after every 20 h, EIS and polarization curve measurements were
conducted to monitor the performance at varying current densities.
All the three conditioning methods showed stable voltage profiles
thought the 150 h on operation. For instance, the cell voltage for ex-situ
activation varied from 1.923 V to 1.921 V between the initiation of the
first and second break-in procedure at 77.5 and 101.3 h, respectively.
Before the commencement of the final break-in procedure at 196.7 h,
a cell voltage of 1.913 was recorded. At the end of this operational
time period which includes the intermittent procedures, a cell voltage
drop of less than 10 mV was noticed. The other two conditioning pro-
cedures also exhibited similar pattern in voltage stability, showcasing
the operational durability. A voltage difference of 5 mV and 17 mV
were noted for in-situ/acids and in-situ/water(90 °C) activation cases
between the beginning of the first and the last break-in procedures. In
terms of the comparative performances for between the conditioning
procedures, we observe that inline with our previous observations, the
ex-situ pre-treatment showcases highest increase in cell voltage. In-
situ/acids activation procedure showed more stable cell performance
when considered for long-term operation. While the difference in the
pre-break-in voltage between ex-situ and in-situ/water(90 °C) treat-
ments tends to decrease at certain time intervals, specifically at 77.5 h
and 196 h, the chemically treated MEA maintains a nearly constant cell
performance, with voltage of 1.865 V and 1.863 V at these respective
time instants. The predictions made by the LSTM model for the three
cases are also shown in Fig. 8. The model shows good agreement
on both the training and testing time intervals with the experimental
data, indicating its capability to accurately capture the underlying
dynamics. Since the change in cell voltage for chemically activated
MEA is nearly constant throughout the time interval, the LSTM model
shows lowest RMSE for this case with the values of 0.0058 and 0.0055
for training and test data, respectively. the RMSE values on the testing
dataset for ex-situ and in-situ/water(90 °C) pre-treatment procedures
were computed to be 0.0062 and 0.0077, respectively.

At this point, it is important to note that the effect of activation
strategies can be different on the short-term and long term cell perfor-
mance. In the previous section, we have observed that the activation
induced by thermal effect performs slightly better than that applied
with chemical impact. However, we not note a switch in this trend
from our observations in Fig. 8. We clearly observe that for long-term
operation, activation induced by chemical impact has a better per-
formance than in-situ/water (90 °C) activation. While activating MEA
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with water at 90 °C increases its hydration state initially, as the cell
continues to operate with water at 60 °C, its hydration state gradually
comes down. Therefore, the cell voltage increases with time and its
showcases a reduced performance when compared against the MEA
activated chemically. To further elucidate this switch in performance
behavior, Figure 10 illustrates the time period during which we notice
this switch in performance between these two activation processes.
Before 50 h, thermal impact shows a better performance than chemical
impact. However, we notice change in this pattern with the time frame
of 50-54 h. Beyond this time frame, chemically activated MEA show
better performance.

A time series data constitutes of key components which can be
additive or multiplicative: trend, seasonality, cyclicity and residual. These
components inform us about the different features of the time series
data. The trend component indicates the general direction of the time
series data observed for a long period of time. The regular and periodic
fluctuations in the data are characterized by its seasonal component.
When these fluctuations in data are not periodic, they are related to the
cyclic component. Finally, the random and unpredictable variations in
the time series are governed by the residuals. Conventional time series
methods [35] focus on predicting the trend and the seasonal component.
The ease in extracting these components could be attributed to the
fact that trend and seasonal/cyclic are characterized by a systematic
and repeating patterns in data progression. Therefore, conventional
statistical tools were designed to extract these patterns and repeating
structures, while assuming the residuals as unpredictable white noise.
However, it is crucial to model at least parts of the residual, to make
reliable forecasting in real time applications.

Fig. 9 shows the comparison of the (a) trend(b) seasonal and (c)
residual components of experimental data and cell voltage predictions
made by the LSTM model for the three conditioning procedures. The
time series were decomposed using additive assumption. In general, we
observe the voltage has an increasing trend for all the three cases, albeit
at a lower rate. This pattern in trend evolution repeats each time after
the break-in procedure. A good agreement between the experimental
and model prediction is noted. The more irregular but periodic seasonal
component shown in Fig. 9(b) is also well captured by the LSTM
model. In particular, we observe that the seasonal component for in-
situ/water(90 °C) activation has a larger contribution to the overall
cell voltage, with an amplitude variation of +0.25 V when compared
with the other two cases with +0.05 V. The central advantage of the
LSTM model is not only in its ability to accurately capture the trend and
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Fig. 9. Comparison of LSTM model predictions with experimental data across (a) trend (b) seasonal and (c) residual components of the cell voltage time series.
The time series decomposition for the three conditioning procedures is shown, highlighting the model’s ability to accurately capture the long-term trend, periodic

seasonal patterns, and residual variations.

seasonal component, but also the residuals accurately as illustrated in
Fig. 9(c). For all the three cases, we observe that the residual component
has a larger contribution than the seasonal component to the voltage
time series. The ability of LSTM to predict residuals lies with the
assumption made in defining residuals by conventional methods [35].
While residuals are considered as purely random and uncorrelated,
they often contain interactions with other variables, undetected auto-
correlations and nonlinear dependencies. Deep learning models, such as
LSTM, are capable of extracting and learning these non-linear patterns
using memory cells and gates. They remember patterns from the past,
even a random spike in the data, to make predictions. Moreover,
influence of external factors, such as the applied current density in this
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case, is taken by the LSTM model to predict the residual part. Therefore,
these data-driven models are capable to make improvised time-based
voltage predictions.

4. Conclusions

The effect of four pre-treatment procedures on the performance
of PEMEC was investigated through three different machine-learning
methods: KNN, XGB, and ANN. A PEMEC comprising of Nafion N115
membrane with an active area of 4.4 x 4.4 cm? was used to generate the
data required for model development. Since the focus of this work is to
investigate the effect of conditioning procedures on cell performance,
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the operating conditions and other parameters were held constant. The
model performance was calibrated using the RMSE and R? performance
metrics. The main conclusions drawn are as follows:

(1) All three models showed good performance in predicting the cell
voltage for varying current densities and pre-treatment proce-
dures. However, deviations in model performance for impedance
predictions were noted. The KNN model showcased variance by
performing well on the training data and over-fitting on the test
data. Lack of sufficient EIS data hinders the performance of ANN
model for impedance predictions. The XGB model showed an
overall better performance for both cell voltage and impedance.
Ex-situ conditioning leads to membrane swelling along both
through plane and in-plane directions. Therefore, it showcases
lower performance and higher ohmic resistance when compared
to the reference scenario. Both in-situ/acids and in-situ/water(90°)
activation procedures showed lower ohmic resistances and cell
voltage when compared against the base case.

A strong alignment between machine learning predictions and
experimental results is observed, as SHAP analysis identified in-
situ/water(90°) activation as the most effective, followed by in-
situ/acids, reference and ex-situ for short-run conditioning opera-
tion. This ranking is consistent with experimental findings [11].
Time series predictions from the LSTM model showed good agree-
ment with experimental data. Unlike conventional forecasting
techniques, LSTM is capable of making accurate predictions of the
residual component of the time series.

(2)

3)

4

Selecting suitable conditioning protocol is essential not only for obtain-
ing optimal cell performance, but also to prolong electrolyzer health.
The effect of certain pre-treatment condition is also depends on the
duration of time-period considered. For short-term observations, we
noticed that thermally activated MEAs perform slightly better than
those activated chemically. However, from the stability analysis it
is evident that in-situ/acids activation outperforms in-situ/water(90°)
activation. In this context, data-driven models play a crucial role in
identifying the optimal conditioning procedures, thereby minimizing
both time and experimental costs.
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