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Towards high resolution, validated and open
global wind power assessments

E. U. Peña-Sánchez1,2,6, P. Dunkel 1,2,6 , C. Winkler 1,2,6, H. Heinrichs 1,3,
F. Prinz1, J. M. Weinand 1, R. Maier 1,2, S. Dickler1, S. Chen 1,4, K. Gruber 5,
T. Klütz 1, J. Linßen 1 & D. Stolten1,2

Wind power is widely recognized as a key component of future net-zero
energy systems. However, substantial variability among current wind resource
and power simulations used for wind farm deployment limits the reliability of
siting and system integration decisions. Therefore, we present a transparent,
open source, validated and evaluated, global wind power simulation workflow
for the renewable energy simulation tool ETHOS.RESKit. As the first wind
simulation workflow using the new Global Wind Atlas 4 and the fifth iteration
of the European Center for Medium-Range Weather Forecasts Reanalysis, it is
capable of simulating time-resolved energy output of wind turbines with high
spatial resolution and customizable designs for both onshore and offshore
wind turbines. The tool has undergone an extensive validation and calibration
process using over 18million globalmeasurements frommeteorologicalmasts
for wind speed bias correction and 8millionmeasurements fromwind turbine
sites across 6 countries during 2002 to 2021. In comparison with measured
energy yield from wind turbine sites, we achieve a global average capacity
factor mean error of 5.6% and Pearson correlation of 0.844. In addition, we
evaluate its performance against annually aggregated energy production data
from operational wind farms and country-level wind power generation sta-
tistics reported by energy agencies, demonstrating its accuracy across multi-
ple spatial and temporal scales with a mean error of only 0.6%. Additionally, a
final calibration step ensures alignment of the simulation with real world sta-
tistics. The release of ETHOS.RESKit is a step towards a fully open source and
open data approach to accurate wind power modeling by incorporating
comprehensive simulation advances in one model.

Wind power is placed as one of the largest renewable sources for the
upcoming decades1–4. Thus, evaluating extractable wind energy
resources is essential to develop strategies for the energy systems
transformation, for instance in capacity planning, designing ade-
quate market frameworks, or for increasing the speed of planning
and permitting2,4–6. Being able to accurately assess wind resources
ultimately leads to more reliable future energy transformation
strategies.

Extractablewind energy resources dependon the location (spatial
dependency), on the conditions at a particular time (temporal
dependency), and on the wind turbine performance (technology
dependency) to translate wind speed’s kinetic energy into electricity
output. Incorporating these three aspects in one wind energy assess-
ment tool is essential to enhance the robustness and reliability of
results. There have been continuous efforts within the renewable
energy simulation community to capture these dependencies using
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time-resolved and geospatially-constrained wind power simulation
models7.

A methodological gap persists, however, when it comes to the
calibration and validation of such wind power and energy simulation
models. For example, a previous article8 found that only 21% of studies
assessing large-scale wind resource potentials conduct a validation of
the input data. For the open-source simulation tools, the situation is
even worse: Whilst Renewables.ninja provides a calibration over
selected European countries9 and Murica et al. 10 perform a validation
of country-level generation time-series for European countries, no
wind energy simulation tool is validated at global scale to the knowl-
edge of the authors. The consequence is a lack in reliability of the
simulation results. The present paper addresses this shortcoming by
developing a global calibration and validation process which is
demonstrated using the example of the open-source ETHOS.RESKit
but is applicable also to other wind energy simulation tools.

The importance of open-source models and datasets in energy
research has gained increased attention, as they facilitate transpar-
ency, enable reproducibility of results, and promote collaborative
development8. Widely used, state-of-the-art, open-source models that
account for the three wind power dependencies are
Renewables.ninja9, RESKit (now ETHOS.RESKit)11, pyGRETA12 and Atlite13

(see Table 1). The first three models use weather data based on
MERRA-2 (Modern-Era Retrospective Analysis for Research and
Applications v2)14, additionally RESKit and pyGRETA take advantage of
the higher-resolved Global Wind Atlas (GWA)15 to increase the spatial
resolution to 1 km2. Atlite employs ERA5 (European Center for
Medium-Range Weather Forecasts Reanalysis v5)16 data, which com-
pared to MERRA-2 has a higher spatial resolution of 0.28° [~ 31 km2]
and offers wind speeds at 100m height instead of 50m as in the case
of MERRA-2.

All four models face two primary limitations: first, the absence or
restricted availability of validation procedures and, second, the
unaddressed inherited bias from their weather data source as shown
by various studies8,17–23. The most overlooked aspect is the validation
of model outcomes despite its crucial relevance to narrow uncer-
tainties and enhancing the robustness of assessments as emphasized
by other authors7,9. Validation, as understood by the authors, involves
comparing model outcomes with real-world data to assess how
accurately the simulation represents actual observed conditions. Only
Renewables.ninja and the initial RESKit model provide a validation
procedure at all, but exclusively for European wind production.
Moreover, no supplementary validations of these models have been
conducted in other regions. Consequently, an evaluation of the
models’ reliability and performance on a global scale remains an open
question. Renewables.ninja validated their model results against
monthly-aggregated country wind power generation data from the
European Network of Transmission System Operators for Electricity
(ENTSO-E)24 as well as nationally aggregated wind power generation
datawith at least hourly resolution fromeight power systemoperators
for eight European countries. The authors9 found a systematic mean
error in wind speeds inMERRA-2 across Europe. Based on this finding,
they calibrated the results of their model by incorporating national
correction factors. The initial RESKit model11 had been validated
against hourly power generation data from two wind parks, resulting
in a high Pearson correlation between 0.80-0.88, with total power
generation underestimations between 5 and 37%. In addition, the
model performance was compared with monthly power generation
data from 86 turbines in Denmark, where themajority of deviations in
power generation range from −20 to 30%.

The second limitation is defined by the absence or insufficient
measures taken to rectify mean errors present in the input data. Pre-
vious studies havedocumented that reanalysis data aswell as theGWA
inherently contain certain deviations and mean errors. For instance,
seasonal and diurnal mean errors in MERRA-2 and ERA5 wind speed Ta
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data have been found previously23, as well as terrain-related deviations
when comparing wind speeds from reanalysis data with wind speed
measurements20,22. Furthermore, statistical comparisons of these two
datasets have been conducted18,21, ultimately concluding that ERA5
exhibited superior performance in comparison to MERRA-2. In addi-
tion, global mean errors in wind speeds at 10m were also found in the
GWA4 (see Supplementary Section 1.12). An overall underestimation
across the globe is even more pronounced in Eastern Australia, along
the US coastlines, in Southern Europe and the Mediterranean, the
Siberian Taiga and rain-forested regions, to a lesser extent also
throughout Sub-Saharan Africa and South America. Overestimations
occur isolated especially in the Northern hemisphere everywhere, but
are found in larger quantities throughout continental Asia and in
Northern Europe as well as in Canada (see Supplementary Fig. 1).
Therefore, the evaluation and subsequent correction of wind speeds
derived from reanalysis data and the GWA4 can contribute sig-
nificantly to the accuracy of wind energy assessments. Notably,
although Renewable.ninja and the initial RESKit model acknowledge
such effects and indirectly address them via their validation proce-
dure, none of the listed models has utilized wind speed correction
measures to address inherent mean errors in reanalysis data and
the GWA.

To cover the existing bandwidth of wind turbine characteristics,
simulating as many commercially available wind turbines as possible
can support achievingmore realistic power generation estimations. As
presented inTable 1,mostmodelsoffer to simulate theperformanceof
such turbines although the available types of turbines vary from 27 to
141. Themostflexible approachwhen it comes to user-defined turbines
is provided by the initial RESKit model11 because it is the only model
that allows the user to define a synthetic wind power curve, in addition
to the ones declared by the manufacturers, based on three wind tur-
bine parameters: hub height, rotor diameter and capacity. This is
especially useful for simulating prospective wind turbines, which is
often necessary when evaluating future scenarios. In summary, the
identified constraints in the reviewed literature comprise the lack of
thorough validation encompassing regions beyond Europe, the
absence of mean error corrections in the input weather data source,
and the lack of incorporating and evaluating the performance of
contemporary and prospective wind turbine models.

In this article, we address the above-mentioned limitations of
wind powermodels to enhance their reliability and applicability. Thus,

this study introduces an enhanced expansion to the wind power
module of ETHOS.RESKit. Our model addresses the identified limita-
tions through extensive validation, global applicability, and the
incorporation of more than 800 wind turbine models available to the
modeler. To enhance precision, we implement a comprehensive cali-
bration of wind speed data gathered from 213 global weather mast
locations in 25 different countries globally, spanning over 8 million
hours of observation after filtration, aiming at rectifying systematic
wind-speed dependent deviations present in reanalysis data and
the GWA4.

Furthermore, we validate the simulated wind power output by
comparing it with the actual hourly output from 152 turbines and wind
farm sites. Finally, we further validate our model by comparing the
outcomes of the simulation of over 30 000 existing global wind farms
with over 490,000 turbines with yearly wind power generation esti-
mates derived fromstatistical analysis, aswell aswith publicly available
country-level hourly wind power generation data. In response to this
analysis, we introduce a methodology and provide global capacity
factor correction factors as open data to enhance alignment with
widely available country-specific wind power generation data.

Therefore, our open-source tool aims to close the outlined gap in
literature by first addressing general biases present in reanalysis data
and the GWA4 by applying a wind speed dependent wind speed cor-
rection and secondly by performing an extensive validation of the
model output against various real-world data. Through these rigorous
measures, our work contributes significantly to the reliability of future
wind power simulations. This contribution is of utmost relevance for
the ongoing energy transformation, providing a robust foundation for
accurate, open and globally applicable wind energy assessments.

Results
Wind speed calibration impact and improvements
The calibration of input wind speeds as described (c.f. Methods Sec-
tion “Calibration and cross-validation of estimated wind speeds from
reanalysis weather data”) yielded enhanced performance across all
wind dependencies. Figure 1 shows the impact of wind speed calibra-
tion by illustrating the changes when applying the value-based wind
speed adjustment to the raw simulated wind speeds. Figure 1a shows
the result of a calibration applied to simulated wind speeds. The cali-
bration increases wind speeds below approximately 4.0m/s and
decreases those above it. Figure 1b details the non-linear nature of this
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Fig. 1 | Effect of the value-based wind speed calibration for different simulated
wind speeds. a Corrected versus original simulated wind speeds, with the 1:1 line
shown for reference. Wind speeds below approximately 4.0m/s are adjusted
upwards, while higher speeds are adjusted downwards. b The correction factor

applied as a function of wind speed including a sixth-degree polynomial fit illus-
trating the magnitude of wind speed correction at different wind speeds. Source
data are provided as a Source Data file.
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adjustment, showing the correction factor peaking at approximately
12.5m/s. At this peak, the original wind speed is adjusted downwards
by about 11%. As speeds increasebeyond 12.5m/s, themagnitudeof the
correction gradually lessens until 17.5m/s. The calibration effectively
reverses an observed overestimation of wind speed in the range rele-
vant forwind turbine power generation (3–25m/s). This dependency is
not possible to match with a regression of any form and highlights the
relevance of a value-based wind-speed calibration approach. It is
important to note that there is a steep reduction in the number of
available observations at wind speeds ~20m/s or higher, which con-
tributes to the fluctuations seen in Fig. 1. Additionally, the measured
wind speeds exhibit a skewed distribution that is well-described by a
Weibull distribution, with ameanwind speed of about 6m/s, which is a
relatively low average wind speed for wind energy installations.

The impactofutilizing thiswind speed calibration on the accuracy
of the proposed wind power simulation workflow (cf. Method Section
“Comparisonwith time-resolvedwind turbine power generationdata”)
is evaluated across temporal, spatial, and technological dimensions.

Temporal dimension. The calibration offsets over-representation of
high-capacity factors in uncalibrated workflows by addressing wind
speed corrections, reducing statistical errors, and ensuring closer

alignment with hourly measurements from wind farms (see Table 2
and Fig. 2). The calibration procedure reduces the capacity factor
mean error by 80.7% and improves temporal correlation metrics such
as root mean square error, Pearson correlation, detrended cross-
correlation coefficient, and Perkins’ skill score (see Table 2). Despite
larger deviations for higher capacity factors, the calibratedwindpower
workflow of ETHOS.RESKit achieves near-parity in total cumulative
electricity generation.

Zero capacity factors occur at a similar rate ( ~ 4–7%) in both
measured and simulated workflows, as wind speeds frequently fall
below or exceed turbine operational thresholds (see Fig. 2). The cali-
bration procedure has a negligible effect on these occurrences. The
calibrated wind power workflow of ETHOS.RESKit aligns closely with
measured values in the (0–3] capacity factor bin, the most frequent
category. In contrast, the uncalibrated workflow underestimates
occurrences by about one-third, indicating weaker temporal correla-
tion and probability density alignment. In mid-range capacity factor
bins (3–48%), the calibrated workflow aligns better with measured
trends despite initially overestimating values and then declining more
sharply. Conversely, in high-capacity factor bins (51–99%), the uncali-
bratedworkflow tracksmeasurementsmore closely, though these bins
contribute less to total electricity generation due to lower cumulative

Table 2 | Comparison of key statistical indicators comparing simulated andmeasured hourly capacity factors fromwind farms
from two workflow configurations: calibrated and non-calibrated

Indicator [unitless] Calibrated Non-calibrated Delta (rela-
tive) [%]

Significance for wind energy assessments

Measured mean 0.367 - -

Mean 0.388 0.47 −18.2 Closer approximation to the total power generation by the turbines allowing
for more precise economic estimations such as levelized cost of electricity,
return of investment, value of loss load, etc.

Mean error (relative) 0.056 0.292 −80.7

Perkins skill score 0.90 0.86 +3.68 Closer approximation to thepowergeneration stochastic variability allowing
for more precise technical considerations design to reduce this type of
variability in energy systems such as infrastructure capabilities in storage,
transmission, etc.

Root-mean square error 0.196 0.240 −18.6 Closer approximation to thepower generation natural variability allowing for
more precise technical design considerations to optimize power dispatch in
energy systems such as infrastructure capabilities in power generation,
demand control, system synergies, sector coupling etc.

Pearson correlation 0.844 0.8274 +1.98

Detrended cross-correlation
analysis (DCCA) coefficient

0.793 0.765 +2.74
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occurrences. At full turbine power (100% capacity factor), both
workflows significantly overestimate measurements. However, the
uncalibrated workflow overshoots by 3.0 times compared to 1.9 times
for the calibrated workflow, significantly impacting total generation
and statistical indicators.

Spatial dimension. The calibrated wind power workflow of ETHOS.-
RESKit demonstrates no significant location bias across turbine types
(i.e., on- or offshore) or locations when compared to both aggregated
and hourly-resolved data as shown in Fig. 3, reinforcing its robustness
in the spatial dimension. For hourly-resolved data, most locations
show a mean capacity factor error within ±12%, with a predominantly
positive deviation (overestimation, see Fig. 3)25. This margin is con-
sidered acceptable for generationmodels. However, isolated locations
in Norway and Brazil show larger mean errors (~−43%), possibly due to
discrepancies between simulated turbine characteristics and mea-
surements or local GWA4 deviations.

The use of temporally aggregated generation data, which pro-
vides broader spatial coverage but lacks temporal detail, reveals a mix
of trends (see Fig. 3). Wind parks in Denmark, Belgium and the USA
show both negative men errors (underestimation) and positive mean
errors (overestimation). Wind parks the Netherlands, on the other
hand, predominantly exhibit underestimation. While useful for
expanding location coverage, this approach introduces greater
uncertainty due to its lack of temporal granularity.

Mostmean relative errors in capacity factor by region and turbine
type fall within ±14%, with the largest positive errors seen in New
Zealand ( + 16.7%) and Germany ( + 25.5%) (see Supplementary
Table 4). The largest negative error occurs in Brazil (−43.1%). Denmark
demonstrates themost accurate results ( + 0.2%), followed by Belgium
( + 4.1%). No consistent discrepancies are linked to turbine types.
Hourly-resolved data proves more reliable for precise analysis,
enabling the identification of phenomena like induced stalling,
restricted operation, and the exact onset of power generation. This
enhances the model’s ability to address spatial and operational
dynamics effectively.

Technological dimension. In order to assess the efficacy of ourmodel
in replicating wind power generation, we conducted an experiment
wherein we subjected the model to measured wind speeds at hub
height. This enables the identification of potential input wind speed
biases in temporal and location dependencies. However, reliable hub-
height wind speed data is scarce. Only Denker and Wulf AG provided
the requisite time-resolved wind speeds at hub height in conjunction
with power generation from five distinct turbine models. Figure 4
compares themeasurements and the simulation results obtainedusing
the manufacturer’s power curve included in the windpower.net26

database and the synthetic power curve generator algorithm in
ETHOS.RESKit.

A comparison of themanufacturers and synthetic power curves of
Enercon and N117-2400 turbines reveals a striking similarity in shape.
This is corroborated by a Perkins Skill score that is highly similar in
numerical terms. This indicates that the simulated power curves are
highly analogous and closely aligned with the capacity factor mea-
surements. The line plot for the 3.4M104 Senvion shows that the
simulated power curves produce significantly different sorted capacity
factors compared to the manufacturer’s and to the actual measure-
ments. Possible causes of the latter might come from data handling
and processing of measurements or the comparably old developing
year of the turbine (2008). A newly introduced synthetic power curve
score (SPCS), see Methods Section, overcomes possible data errors as
well as the lack of power generation data for all turbines by directly
comparing manufacturer’s and synthetic power curves, bypassing the
need to have time-resolved wind speeds at hub height. Table 3 pre-
sents the average SPCS for the turbines manufactured by the six

leading producers, as reported in the Windpower.net26 database. The
data in this table demonstrate that, irrespective of the wind speed
input, the synthetic power curve algorithmdeveloped11 and included in
ETHOS.RESKit achieves amean power curve score of 0.96 or higher for
the majority of global installed capacity. This is especially beneficial in
the case where the actual power curve is unknown.

The results obtained from all three dimensions demonstrate that
the ETHOS.RESKit wind power generation model, when used in con-
junction with the calibration procedure, offers a reliable assessment
tool across the different measured data classes obtained. It should be
noted, however, that the availability of such data on a global scale is
limited, which presents a challenge to the global validation of power
simulation models.

Evaluation against global wind power generation estimates
To address the limitation of global measurement data availability and
evaluate the model’s performance against global power estimates,
ETHOS.RESKit was used to simulate historical country turbine fleets
using a corrected version of the Windpower.net26 database and com-
pared with publicly available country level wind power estimates for
several years from the International Energy Agency (IEA) (see Fig. 5 and
Methods Section “Comparison with country-level statistical data”).
After minimizing the effects of technology differences, temporal
uncertainties, and locational variations, themodel showed a very good
match on global average, with national discrepancies of mostly below
10%. The IEA reports a global average capacity factor of 0.306 across 71
countries and offshore regions, while the model yielded an average of
0.287, a relative deviation of 6.2%. In comparison, the non-calibrated
workflow demonstrated a significant overestimation, with an average
capacity factor of 0.377 and a relative deviation of 23.1%. Regional
trends are depicted in Fig. 5. At global scale, the pattern largely follows
the GWA4 trend of underestimation towards and just South of the
equator (cf. Supplementary Section 1.12). This also means that global
correction cannot be perfect with a single set of windspeed correction
factors. The small tendency for overestimation in Northern latitudes
hence aligns with the findings of the location-specific comparisons at
windfarm level (see above). Whilst the errors here are reduced sig-
nificantly by the wind speed correction, the multinational distribution
of the weather masts for calibration does perfectly reflect the specific
Northern latitude trends. This in turn leads to slightly overestimated
capacity factors in Northern and extreme Southern latitudes, with
locally more pronounced patterns due to various reasons. Lower
underestimation by GWA4 in Northwestern Europe might explain
deviations inGreatBritain andGermany, whilst individual outliers such
as Panama, the Japanese offshore locations or Cyprus may be caused
by external factors: The IEA dataset provides national energy and
capacity values per year only but lacks information about individual
windfarms and technology characteristics, necessitating assumptions
and external data sources to define turbine properties. Further
uncertainties stem from both the national and the annual averaging of
generation data, which obscures spatial and temporal dynamics, and
from challenges in precisely locating turbines or identifying their
commissioning dates or missing design parameters. Additionally,
external influences such as grid congestion, curtailment, import/
exportdynamics, anddiscrepancies in reporting conditions contribute
to differences between simulated and actual results.

Calibration factors, as discussed in Supplementary Section 5.8,
help mitigate these discrepancies, with national correction factors
provided alongside this paper for alignment with IEA data. Further-
more, we provide raster-format correction files that extend beyond
country boundaries, enabling assessments in regions without wind
production and enhancing the global applicability of ETHOS.RESKit.
This additional option in the presentedworkflow allows the simulation
of wind turbines in any country of the world with realistic average
capacity factors.
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In conclusion, this evaluation underscores the model’s ability to
improve assessments of wind energy dependencies while highlighting
the limitations of relying on aggregated country-level data. ETHOS.-
RESKit demonstrates significant advancements in accuracy compared
to non-calibrated workflows, setting a strong foundation for global

wind energymodeling. The previously described enhancements of our
model also result in superior statistical indicators in comparison to
similar models such as renewables.ninja (see Supplementary Sec-
tion 1.13).
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Fig. 4 | Comparison ofmeasured capacity factor and simulated capacity factor
when using real and synthetic power curves. Panels compare capacity factor (y-
axis) as a function of turbine load, expressed as percentage of nominal power (x-
axis), for five turbine models a Enercon E115-3000, b E141-4200, c E92-2350,
d Senvion 3.4M104 and e Nordex N117-2400). Solid blue lines show simulated

capacity factors derived from manufacturer power curves, and dashed blue lines
show simulated capacity factors when using synthetic power curves. Black lines
indicate measured capacity factor data. Perkins Skill Scores (PSS) reported in each
panel quantify agreementwithmeasured observations. Sourcedata are provided as
a Source Data file.
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Discussion
In this study, we introduce an open-source, time-resolved, validated
wind power simulation workflow with global applicability for the
renewable energy simulation tool ETHOS.RESKit. ETHOS.RESKit
leverages high-resolution wind data (250m x 250m) from ERA5 and
GWA4, providing robust simulation capabilities and featuring themost
extensive turbine model library among available tools. This library
includes 880 turbine types and supports the creation of customizable
synthetic power curves. The intention of this study besides describing
the new wind workflow is to showcase how a methodological gap in
current renewable energy simulation tools can be closed: The lack of
global calibration and validation with the intention to provide reliable
and highly resolved capacity factor data for wind turbines at global
scale. This methodological approach developed in this work is applied
to ETHOS.RESKit using the presented data, but is applicable also to
other wind energy simulation tools.

The key innovation in the wind power workflow of ETHOS.RESKit
therefore is its calibration process, which uses over 8 million wind
speedmeasurements from 213 globalmeteorological mast sites across
25 countries. This comprehensive dataset enabled a value-dependent
correction of systematic wind speed biases present in ERA5 andGWA4,
ensuring improved alignment with real-world data. The calibration
process significantly enhances model accuracy which is evaluated by
comparing to more than 8 million hours of power generation data
from 152 wind turbines across seven onshore and offshore regions.
Temporal adjustments to input wind speeds shift capacity factors
toward smaller values, aligningmore closelywith frequentlymeasured
capacity factors. This results in a 81% reduction in capacity factor
deviation compared to uncalibrated simulations for turbine-level time-
resolved data. When simulating historical country wind fleets, the
model reduced the average capacity factor deviation to official sta-
tistics from 23 to 0.6%. Importantly, no relevant locational capacity
factor trends were observed, and the model performed consistently
well across both onshore and offshore regions. Furthermore, the
synthetic power curve score, which evaluates alignment between
synthetic and manufacturer-provided power curves, demonstrated
high accuracy. Approximately 80% of globally installed turbines
achieved aminimumcorrelationof0.96, underscoring theprecisionof
the model. By reducing capacity factor deviations at both the turbine
and aggregated annual levels, ETHOS.RESKit demonstrates very good
average alignment with IEA-based generation data from 71 countries.
These advancements position ETHOS.RESKit as a leading open-source
tool for global wind power modeling.

Importantly, although ETHOS.RESKit can simulate individual tur-
bines, it is better suited to larger-scale assessments involving hundreds
of turbine sites. Because of the spatial resolution characteristics of the
ERA5 and GWA4 datasets, themodel is less accurate at single locations
where local wind speed conditions are not adequately represented.
Furthermore, diurnal, seasonal, and terrain-based biases, as docu-
mented in the literature, fall outside the scope of our current correc-
tion method. Future work should concentrate on solving these
remaining biases in order to further enhance the precision of wind
power simulations. However, a significant share of these issues is
contained already within the weather data, namely ERA-5 and GWA4,
which is a mere input to ETHOS.RESKit simulation workflows.
ETHOS.RESKit can only empirically correct the biases based on wind
speed and power production observations, the reanalysis of the
weather data itself, however, is out of the scope of this work and
instead part of ongoing research by the producers of the respective
datasets. Moreover, enhancements in higher temporal resolution and
more precise local representations ofwindwould be advantageous for
the field. Furthermore, the entire energy and climate community
would greatly benefit from the availability of more publicly accessible
localized time-resolved wind speeds and power generation data. In
light of these considerations, the authors urge the scientific

community to engage in more collaborative endeavors and to advo-
cate for the establishment of transparent guidelines governing the
accessibility of data for scientific purposes.

The findings of this study hold substantial value for the scientific
and energy system analysis communities. ETHOS.RESKitmarks amajor
step forward in wind power modeling, combining global applicability
with high spatial resolution and the capability to simulate a wide range
of technical turbine characteristics. As the first wind power simulation
tool to undergo a rigorous validation and calibration process across
diverse spatial and temporal scales on a global level, it sets a new
standard in the field. Additionally, the inclusion of regional correction
factors enhances the precision of wind energy assessments, even in
areas currently lacking wind turbine installations. By enabling more
accurate simulations, the open-source tool equips decision-makers
with critical insights to optimize renewable energy utilization and
make strategic investments. This advancement significantly supports
the integration of renewable energy into global power systems.

Methods
In this section, we outline the methodology employed for our wind
power simulation and validation approach implemented in the wind
power workflow of ETHOS.RESKit11,27 (see more details about ETHOS.-
RESKit in Supplementary Section 1.6), aimed at providing a basis for
global wind energy assessments. As visualized in Fig. 6, the metho-
dology is structured into four subsections covering (a)data acquisition
and processing, (b) deriving global wind speed calibration factors
aiming at addressing potential mean errors in the underlying weather
data, (c) a subsequent extensive validation of our wind power simu-
lation workflow by comparing against time-resolved park level power
generation data, country-level power generation data and national
statistical data, and (d) deriving national correction factors. Each step
ensures the accuracy and robustness of the employed simulation
framework.

Data Acquisition, Classification, and Processing
In the following, we will address the acquisition, classification, and
processing of data crucial for the validation and enhancement of our
wind power simulation workflow. The data sources encompass global
wind speed measurements, wind turbine power generation records,
information on existing windfarms, and historical national wind elec-
tricity power generation data and are listed in Supplementary Table 4.
Each dataset plays a distinct role in refining our simulation model,
either through correction or validation processes.

Wind speed measurement data
To initiate the study, we collected 18.3 million hourly, mostly openly
available recordings from 1980 to 2022 of wind speeds from

Table 3 | Average synthetic power curve score in ETHOS

Manufacturer Global
installed
capacity
[GW]

Percentage
of global
capacity

Turbines
installed
[thousand]

Synthetic
power
curve
score1

Vestas 110.6 29.68 49.7 0.988

Enercon 45.4 12.19 24.2 0.965

GE Energy 43.0 11.54 25.0 0.984

Siemens 38.9 10.43 14.2 0.985

Gamesa 36.0 9.67 24.5 0.994

Nordex 21.7 5.81 8.7 0.992

Total 295.6 79.32 146.3 0.984
1the synthetic power curve score is the cumulativeminimumsumof capacity factors distribution
of two power curves: manufacturer and synthetic, taking as reference the manufacturer one.
RESKit for the turbines of the top six manufacturers according to the installed capacity reported
according to windpower.net26.
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meteorological masts worldwide, ranging in height from 40 to 160m
at 210 locations in 25 countries. These recordings are utilized to derive
a wind speed correction. Measurements from masts at ground level
(10m) have only been compared to simulated data from GWA415 to
qualitatively detect potential global biases in ERA5 (cf. Supplementary
Fig. 1) and justify the detailed regional correction approach. The data
has not been included into the quantitative calibration and validation
methodology though since relevant wind speed heights for turbine
simulations are around 100m and large height differences entail
additional sources of error28. We nevertheless hope to contribute to
creating awareness for potential biases within quasi-standard wind
datasets such as the Global Wind Atlas or ERA-5. Measurements were
harmonized following the steps outlined in Section 1.2 of the Supple-
mentary. Utilizing quality control information provided together with
the measured wind speeds (cf. Supplementary Section 1.3), we filtered
out erroneous measurements, e.g., no valid recording, negatives,
duplicated values, etc. For further processing, we resampled the
measured wind speeds and those from ERA5 to hourly values, stan-
dardized them toUTC time, and saved their geolocations aswell as the
measurement heights respectively within one netCDF file per mea-
surement height. All used input data sources are listed in the Supple-
mentary Table 4.

Wind turbine electricity power generation data
A total of 8 million hourly recordings of turbine electricity generation
from 152 onshore and offshore wind turbines and wind farms from
2002 to 2021 from 6 countries globally were collected from various,
mostly proprietary, data sources and will be employed in a validation
of our wind turbine simulation workflow. Harmonizing this data
involved a process analogous to the wind speeds procedure and
involved converting the power output time series to a capacity factor
time series by dividing themeasured power with the nominal capacity.
Furthermore, in the case of wind farm data, the reported electricity
output was converted into a capacity factor time series by dividing by
the total park capacity.

As a quality controlmeasure, we applied an algorithm to filter out
out-of-normal operations such as curtailment, maintenance, or other
irregularities from the gathered data to avoid distorting the validation
results. For this, we simulated the capacity factors of the respective

turbines (see Supplementary Section 1.6) to first exclude observation
periods in which the measured capacity factor was zero while the
simulated capacity factor was greater than 0.4 to account for erro-
neous measurements. Second, we filtered observation periods in
which the measured capacity factor exhibited zero for longer than a
day to capture maintenance. Lastly, we filtered values where the
measured capacity factor does not change for aminimum of 5 h, while
the difference between the measured and simulated capacity factor is
greater than 0.1 to filter out curtailment lasting longer than 5 h. Lastly,
the processed data was saved in one netCDF file per location.

Database of existing wind farms
Additionally, we acquired a proprietary database on existing wind
farms containing data on 26,900 wind farm locations worldwide as
well as databases on turbine models and power-curves available from
thewindpower.net26 to simulate the existing wind fleet stock and
derive national correction factors. The databases include, for instance,
information on geolocation, capacity, number of turbines, hub height,
turbine model, commissioning, and decommissioning dates until July
2022. It furthermore includes a turbine model database with data on
the manufacturer, rated power, rotor diameter, market introduction,
and minimum and maximum available hub heights of turbine models.
Toharmonize and check thesedatabases, preprocessing, void-filling to
estimate missing values and data filtering steps are performed as
outlined in Supplementary Fig. 6. Furthermore, for some entries,
erroneous data was identified by manual examination. The manual
examination for example involved countries with few wind farms
where the capacity andcapacity development of the entries in thewind
farms database differed substantially from the capacity reported by
the IEARenewable Energy Progress Tracker29. If found tobeerroneous,
data on location, capacity and commissioning dates were manually
corrected using additional sources such as reports, OpenStreetMap
and satellite data, if possible (s. Supplementary Section 1.5 for more
details). These modifications are documented and provided as Sup-
plementary Data 3.

Finally, we removed locations with turbine capacities lower than
1MW, as such turbines are comparably old and typically exhibit very
low hub heights, leading to unrealistic simulation outcomes in
ETHOS.RESKit, which is specifically designed for potential assessments
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Fig. 5 | Capacity factor deviation map between ETHOS.RESKit and IEA data.
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of future energy systems. This arises from the substantial downscaling
distance required from the 100m ERA5 wind speed height to the tur-
bine hub-height, introducing inherent uncertainties in the wind-speed
values. In this context, such wind turbines with small hub-heights and
low capacity are anticipated to have a marginal impact on the total
power generation of a country due to their small capacity, justifying
their exclusion from the analysis.

Country-level statistics and time series data
We obtained annual wind power generation and capacity data from
2017 to 2021 for 71 countries and offshore regions from the IEA
Renewable Energy Progress Tracker29 as a basis for calculating national
capacity factors to derive national correction factors for our simula-
tion workflow. Data prior to 2017 has not been included as there was
limited global installation of wind capacity in those years and average
electricity yields are distorted by a high proportion of older, smaller
turbine models. To avoid distortions in capacity factors due to capa-
city additions during a year, a capacity-weighted capacity factor con-
sidering monthly or even daily capacity additions was derived. This
sub-annual factor was based on commissioning dates from the
employed wind farm database and an extensive manual search to
correct and complement the database as well as the IEA data (see
Supplementary Section 1.5). In Equation), index i denotes the respec-
tive wind farm, while ophours is the number of hours the wind farm
was operational in the respective year based on the commissioning
date, and IEA and WD (wind farm database) indicate the data source.

cfIEA,weightedcountry, year =
genIEA

country, year

capIEA
country, year

*
1P

i, country
ðophoursWD

i, country *cap
WD
i, countryÞ

capWD
country, year

ð1Þ

The weighted capacity factor is especially necessary for countries
with limited wind turbine capacities or a large share of commissioned
capacity within a year as small deviations in the data have a large
impact on the reliability of the calculated capacity factor and therefore
the validation results.

In summary, Fig. 7 shows the type and locations of the real-world
data that were considered within this study. Statistical country values
are available for various countries across the globe with data gaps
predominantly in Africa, South America and South Asia. Weather mast
measurements are availablemainly fromtheUSA, Europe, South-Africa
and Iran while wind farm measurements are limited to the North-Sea
area and Norway.

Calibration and cross-validation of estimated wind speeds from
reanalysis weather data
We used the hourlymeasuredwind speeds frommeteorological masts
to employ a calibration and cross-validation of the reanalysis wind
speeds from ERA5 (including GWA4-downscaling) to correct for mean
errors and overall under- or overestimations in the wind speed values
reported by several publications17,19,20,30. For the calibration and cross-
validation we focused on wind speeds above 2m/s due to the opera-
tional range ofwind turbines21,24 andmeasurement heights between40
and 160m, resulting in 8.4million hourlymeasurements. In a first step,
we extracted the wind speeds processed within ETHOS.RESKit for the
same locations, heights, and time periods of the weather masts with-
out applying wake losses or any other correction factors (see Supple-
mentary Section 1.6 for a detailed description). In a second step, wind
speeds were binned in 0.1m/s categories and a proportional regres-
sion per bin was used to fit processed and measured wind speeds. A
weighing based on the number of mast-specific hours with measure-
ment data was selected as it yielded the most even global distribution.
Individual regressions per global region, landcover type and latitudeor
slope bin proved infeasible due to the limited amount of available
measurement data at global scale. Comparative analyses showed
similar trends for various world regions, however, which supports the
validity of an averaged global regression function here. Alternative
regressors were also tested but discarded as our tests indicated signs
of overfitting or worse performance (see Supplementary Section 1.7.1).

The applied proportional regression function is given in Equation)
and is defined by a scaling factor a per wind speed bin. The propor-
tional regressor underwent fitting and validation through k-fold cross-
validation. For this the data was split into 210 folds, with each fold
corresponding to a mast, with the goal of assigning equal weight to
eachmast. The scikit-learn Python library31 was utilized for performing
the k-fold split. The choice of k-fold cross-validation ismotivated by its
suitability for our methodology, considering that other approaches
such as the leave-one-out approach proved computationally intensive,
and a rolling cross-validation performed worse than the k-fold cross-
validation during initial testing.

The cross-validation procedure results in 210 fitted regressors,
subsequently averaged into a single regressor from which a single
scaling factor a per wind speed bin is extracted. These factors were
then used to correct the wind speeds within the ETHOS.RESKit
according to Equation),

wscorr = aðwsrawÞ*wsraw ð2Þ

(a) Data aquisition, classification and processing (b) Calibration and cross-validation of wind
speeds

global wind speed correction factors

(d) Deriving national correction factors

national correction factors

global correction factor raster
(c) Validation of wind power simulation

validation against time-resolved park-level
wind turbine generation data

validation against time-resolved national
wind turbine generation data

validation against national statistical data

wind turbine generation data

existing windfarm database

national hourly wind electricity generation
data

national annual wind electricity generation
data

wind speed measurement data

Fig. 6 | Overview of the applied methodological steps. a Data acquisition, clas-
sification and processing of datasets including wind speed measurements, wind
turbine generation data, national wind electricity generation data and wind farm
database. b Calibration and cross-validation of wind speeds to derive wind speed

correction factors. c Validation of wind power simulations against park-level and
national time-resolved data and national statistical data. d Derivation of national
correction factors and generation of a global correction factor raster. Panel colors
denote workflow stages: blue (a), green (b), orange (c) and purple (d).
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where wscorr represents the corrected wind speed, and wsraw denotes
the uncalibrated modeled wind speed. This unified calibration aims to
rectify any general under- or overestimation present in the data. The
resulting wind speed dependent scaling factors can be found in Fig. 1b
and the supplementary files. This wind speed correction is applied to
every location simulated within ETHOS.RESKit. The wind speed cor-
rection factors are provided as Supplementary Data 1.

To assess the quality of the regressor, we utilized a scoring
function, using the mean error (ME) to account both for general
deviation as well as over- or underestimation of wind speeds and
capacity factors. We computed various metrics common in the
literature18,20,30,32,33 to assess the quality of the cross-validation proce-
dure and evaluate our results. To assess the temporal correlation
between measured and simulated time series, we evaluated the Pear-
son correlation and the detrended cross-correlation analysis (DCCA)
coefficient. In addition, we used the Perkins’ skill score (PSS), a prob-
ability density function, to evaluate the normal distribution.Moreover,
weproposed a newprobability density function called synthetic power
curve score SPCS, based on the PSS from 0 to 1, where 1 represents an
exact match, with the difference that it uses the cumulative minimum
capacity factor distribution of two power curves, taking as reference
the power curve of the manufacturer. The SPCS is described in Equa-
tion) where ws is the wind speed in each location at hub height,
Capacity factor is the respective capacity factor distribution corre-
sponding to wind speed ws for the manufacturer’s and the synthetic
power curve respectively.

SPCS=
Xws
0

min Capacity factormanuf,ws , Capacity factorsynth,ws
� �

ð3Þ

Further analysis involves evaluating diurnal and seasonal mean
errors in simulated wind speeds and reanalysis data. Results are given
in Supplementary Section 1.7 as the main focus of this study is the
ETHOS.RESKit wind power simulation workflow.

Comparison with time-resolved wind turbine power
generation data
Next, we validated the employed ETHOS.RESKitwind power simulation
workflow by comparing it to processed hourly measured turbine
power generationdata. First, ETHOS.RESKitwas utilized to simulate the
wind turbine power generation time-series for the measured time
spans of each real turbine considering their specific hub heights, rotor
diameters, and real power curves, if available. Those power curves are
based on the information provided by the manufacturers and may be
considered theoretical compared to the measured power curve of an
installed turbine on site. In cases where real manufacturer power
curves were unavailable, a synthetic power curve was generated based
on the specific power and a fit derived from 130 manufacturer power
curves11. Simulations were executed both with and without applied
wind speed correction to assess the potential improvements in the
simulation workflow. Furthermore, wind speed losses due to wake
effects are considered using the wind efficiency curve (knorr-mean)
from windpowerlib34. These wake losses were also considered for all
turbine simulations in the results. Electrical and mechanical turbine
losses are considered inherently via the wind speed dependent Cp

factor within the power curves35, downtimes related e.g. to main-
tenance are considered by an additional availability factor of 0.9836,37.
In the preprocessing stepmaintenance times were already filtered out.
Subsequently, we assessed the difference in results using various
metrics, including root mean square error, DCCA coefficient, and
relative mean error. These assessments occurred at the location level.
Aggregated assessments are calculated by weighing each location
equally when calculating metrics.

Comparison with country-level statistical data
As the regional coverage of the available time-resolved wind turbine
power generation data is limited, and our workflow is intended for
global use, we first further validated and subsequently calibrated our
model by comparing it against annual turbine and wind farm level
power generation output and country-level annual capacity factors
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from the IEA29. The years 2017 to 2021 were used since previous years
saw only limited growth of wind capacity.

Annual turbine andwind farm level power generationoutput from
turbines in the United States, Denmark and the United Kingdom were
used additionally as they are publicly available. For each location, the
average reported capacity factor was calculated using capacity and
power generation. Afterwards, the locations were simulated within
ETHOS.RESKit and the simulated capacity factor was compared with
the reported capacity factor.

The filtered wind turbine database, with missing data filled in was
first used to simulate country-level capacity factors by applying the
method described. Second, the database was used to derive IEA-based
country-level capacity factors by accounting for intra-annual capacity
additions. Extensive data checks with the following data exclusion
rules have been applied: If less than 75% of the official IEA capacity is
reported in the wind farm database, the corresponding year was dis-
carded, as this indicates that the wind farm database is incomplete for
that year. Omitting this year would potentially lead to large dis-
crepancies, as a different wind fleet would be simulated compared to
the one that existed in that year. Additionally, we excluded years in
which the country’s IEA capacity was less than or equal to 3MW, as
such a low capacity suggests a limited number of plants, where small
errors in the input data could result in significant deviations in the
simulated country’s capacity factor. Furthermore, we discarded a
country or the respective year of that country if toomany entries in the
wind farm database are deemed erroneous. Therefore, the number of
considered years varies for each country. The list of the final countries
and years considered can be found in Supplementary Section 1.8.
Finally, we validated the performance of our simulation workflow on a
global scale by comparing the resulting, simulated annual country-
level capacity factors against IEA-based country-level capacity factors
by calculating the average deviation in capacity factors for every year.

Furthermore, to be able to correct our simulation workflow
towards official country statistics, we derived additional correction
factors, which can be optionally applied in ETHOS.RESKit. For this, we
calculated a capacity-factor correction factor for every country,
representing the averagedeviation in capacity factorsbetween the IEA-
based country-level capacity factors and our simulated country-level
capacity factors over the years 2017 to 2021 according to Equation):

f corrcountry =mean
cfIEAcountry, year

cfRESKitcountry, year

 !
: ð4Þ

This inverse average deviation served as a country correction
factor (f corrcountry) implemented in ETHOS.RESKit to correct the electricity
output. To avoid capacity factors above 1 and retain load peaks, the
electricity output was corrected by adjusting the processed wind
speed instead of directly correcting the simulated capacity factor. This
wind speed adjusting is performed iteratively until the capacity factors
match with a tolerance of 1%.

Not all countries worldwide can be covered with this approach as
only a limited number of countries have installed relevant wind farm
capacities. We assume that the observed deviations mostly stem from
regional mean errors from which neighboring countries are also
affected. Therefore, we derive a global raster of correction factors
provided as Supplementary Data 4, enabling the application of global
correction at any point in the world. The global raster is created by
assigning every wind farm location used in this study to the respective
country correction factor value and applying a global spatial inter-
polation over these locations. This way, existing regional mean errors
are also corrected in countries without any current wind farm
capacities.

Data availability
Wind speed correction factors, country capacity factor correction
factors, modifications to the thewindpower.net database and the IEA
data and the global raster of capacify factor correction factors gener-
ated in this study are provided as Supplementary Data 1, 2, 3 and 4,
respectively. Source data are provided with this paper. The wind farm
database was obtained under a commercial license from thewindpo-
wer.net and cannot be publicly shared due to licensing restrictions.
Access to thedatabase canbeobtainedbypurchasing a license directly
from thewindpower.net26. The time-resolved wind-turbine power-
measurement data used in this study are available under restricted
access because they were obtained from third-party providers under
individual agreements. Access can be obtained by inquiring directly
with the respective providers listed in Supplementary Table 4. The raw
measurement data are protected and are not available due to data-
ownership restrictions. Further data sources used in this study are
listed in Supplementary Table 4. Source data are provided with
this paper.

Code availability
The model is freely available on the institute’s GitHub page (https://
github.com/FZJ-IEK3-VSA/RESKit). Additionally, the source code of the
ETHOS.RESKitmodel used in this study has been archived at Zenodo27.
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