001051618 001__ 1051618
001051618 005__ 20260116204431.0
001051618 0247_ $$2doi$$a10.1109/TPWRS.2025.3578243
001051618 0247_ $$2ISSN$$a0885-8950
001051618 0247_ $$2ISSN$$a1558-0679
001051618 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-00540
001051618 037__ $$aFZJ-2026-00540
001051618 082__ $$a620
001051618 1001_ $$0P:(DE-Juel1)200120$$aHartmann, Carsten$$b0$$eCorresponding author
001051618 245__ $$aQuantum Annealing Based Power Grid Partitioning for Parallel Simulation
001051618 260__ $$aNew York, NY, USA$$bIEEE$$c2025
001051618 3367_ $$2DRIVER$$aarticle
001051618 3367_ $$2DataCite$$aOutput Types/Journal article
001051618 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768575263_27406
001051618 3367_ $$2BibTeX$$aARTICLE
001051618 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001051618 3367_ $$00$$2EndNote$$aJournal Article
001051618 520__ $$aGraph partitioning has many applications in power systems, from decentralized state estimation to parallel simulation. Focusing on parallel simulation, optimal grid partitioning minimizes the idle time caused by different simulation times for the sub-networks and their components and reduces the overhead required to simulate the cuts. Partitioning a graph into two parts such that, for example, the cut is minimal and the sub-graphs have equal size is an NP-hard problem. In this paper, we show how optimal partitioning of a graph can be obtained using quantum annealing (QA). We show how to map the requirements for optimal splitting to a quadratic unconstrained binary optimization (QUBO) formulation and test the proposed formulation using a current D-Wave QPU. We show that the necessity to find an embedding of the QUBO on current D-Wave QPUs limits the problem size to under 200 buses and notably affects the time-to-solution. We finally discuss the implications of quantum hardware non-ideality on near term implementation in the simulation loop.
001051618 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001051618 536__ $$0G:(MKW-NRW)QuGrids20231101$$aQuGrids - Quantum-based Energy Grids (QuGrids20231101)$$cQuGrids20231101$$x1
001051618 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001051618 7001_ $$0P:(DE-Juel1)180837$$aZhang, Junjie$$b1
001051618 7001_ $$0P:(DE-Juel1)171436$$aCalaza, Carlos D. Gonzalez$$b2
001051618 7001_ $$0P:(DE-Juel1)142000$$aPesch, Thiemo$$b3
001051618 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b4
001051618 7001_ $$0P:(DE-Juel1)179029$$aBenigni, Andrea$$b5$$eCorresponding author$$ufzj
001051618 773__ $$0PERI:(DE-600)2034320-6$$a10.1109/TPWRS.2025.3578243$$gVol. 40, no. 6, p. 4958 - 4970$$n6$$p4958 - 4970$$tIEEE transactions on power systems$$v40$$x0885-8950$$y2025
001051618 8564_ $$uhttps://juser.fz-juelich.de/record/1051618/files/Quantum_Annealing_Based_Power_Grid_Partitioning_for_Parallel_Simulation.pdf$$yOpenAccess
001051618 909CO $$ooai:juser.fz-juelich.de:1051618$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001051618 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)200120$$aForschungszentrum Jülich$$b0$$kFZJ
001051618 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180837$$aForschungszentrum Jülich$$b1$$kFZJ
001051618 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171436$$aForschungszentrum Jülich$$b2$$kFZJ
001051618 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142000$$aForschungszentrum Jülich$$b3$$kFZJ
001051618 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b4$$kFZJ
001051618 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179029$$aForschungszentrum Jülich$$b5$$kFZJ
001051618 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001051618 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
001051618 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
001051618 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-07
001051618 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001051618 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-07
001051618 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T POWER SYST : 2022$$d2025-01-07
001051618 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
001051618 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
001051618 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001051618 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-07
001051618 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bIEEE T POWER SYST : 2022$$d2025-01-07
001051618 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001051618 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
001051618 920__ $$lyes
001051618 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001051618 9201_ $$0I:(DE-Juel1)ICE-1-20170217$$kICE-1$$lModellierung von Energiesystemen$$x1
001051618 980__ $$ajournal
001051618 980__ $$aVDB
001051618 980__ $$aUNRESTRICTED
001051618 980__ $$aI:(DE-Juel1)JSC-20090406
001051618 980__ $$aI:(DE-Juel1)ICE-1-20170217
001051618 9801_ $$aFullTexts