001     1051618
005     20260116204431.0
024 7 _ |a 10.1109/TPWRS.2025.3578243
|2 doi
024 7 _ |a 0885-8950
|2 ISSN
024 7 _ |a 1558-0679
|2 ISSN
024 7 _ |a 10.34734/FZJ-2026-00540
|2 datacite_doi
037 _ _ |a FZJ-2026-00540
082 _ _ |a 620
100 1 _ |a Hartmann, Carsten
|0 P:(DE-Juel1)200120
|b 0
|e Corresponding author
245 _ _ |a Quantum Annealing Based Power Grid Partitioning for Parallel Simulation
260 _ _ |a New York, NY, USA
|c 2025
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1768575263_27406
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Graph partitioning has many applications in power systems, from decentralized state estimation to parallel simulation. Focusing on parallel simulation, optimal grid partitioning minimizes the idle time caused by different simulation times for the sub-networks and their components and reduces the overhead required to simulate the cuts. Partitioning a graph into two parts such that, for example, the cut is minimal and the sub-graphs have equal size is an NP-hard problem. In this paper, we show how optimal partitioning of a graph can be obtained using quantum annealing (QA). We show how to map the requirements for optimal splitting to a quadratic unconstrained binary optimization (QUBO) formulation and test the proposed formulation using a current D-Wave QPU. We show that the necessity to find an embedding of the QUBO on current D-Wave QPUs limits the problem size to under 200 buses and notably affects the time-to-solution. We finally discuss the implications of quantum hardware non-ideality on near term implementation in the simulation loop.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a QuGrids - Quantum-based Energy Grids (QuGrids20231101)
|0 G:(MKW-NRW)QuGrids20231101
|c QuGrids20231101
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zhang, Junjie
|0 P:(DE-Juel1)180837
|b 1
700 1 _ |a Calaza, Carlos D. Gonzalez
|0 P:(DE-Juel1)171436
|b 2
700 1 _ |a Pesch, Thiemo
|0 P:(DE-Juel1)142000
|b 3
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 4
700 1 _ |a Benigni, Andrea
|0 P:(DE-Juel1)179029
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1109/TPWRS.2025.3578243
|g Vol. 40, no. 6, p. 4958 - 4970
|0 PERI:(DE-600)2034320-6
|n 6
|p 4958 - 4970
|t IEEE transactions on power systems
|v 40
|y 2025
|x 0885-8950
856 4 _ |u https://juser.fz-juelich.de/record/1051618/files/Quantum_Annealing_Based_Power_Grid_Partitioning_for_Parallel_Simulation.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1051618
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)200120
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180837
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171436
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)142000
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)138295
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)179029
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2025-01-07
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-07
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T POWER SYST : 2022
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-07
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b IEEE T POWER SYST : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)ICE-1-20170217
|k ICE-1
|l Modellierung von Energiesystemen
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)ICE-1-20170217
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21