| Home > Publications database > Quantum Annealing Based Power Grid Partitioning for Parallel Simulation > print |
| 001 | 1051618 | ||
| 005 | 20260116204431.0 | ||
| 024 | 7 | _ | |a 10.1109/TPWRS.2025.3578243 |2 doi |
| 024 | 7 | _ | |a 0885-8950 |2 ISSN |
| 024 | 7 | _ | |a 1558-0679 |2 ISSN |
| 024 | 7 | _ | |a 10.34734/FZJ-2026-00540 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2026-00540 |
| 082 | _ | _ | |a 620 |
| 100 | 1 | _ | |a Hartmann, Carsten |0 P:(DE-Juel1)200120 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Quantum Annealing Based Power Grid Partitioning for Parallel Simulation |
| 260 | _ | _ | |a New York, NY, USA |c 2025 |b IEEE |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1768575263_27406 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Graph partitioning has many applications in power systems, from decentralized state estimation to parallel simulation. Focusing on parallel simulation, optimal grid partitioning minimizes the idle time caused by different simulation times for the sub-networks and their components and reduces the overhead required to simulate the cuts. Partitioning a graph into two parts such that, for example, the cut is minimal and the sub-graphs have equal size is an NP-hard problem. In this paper, we show how optimal partitioning of a graph can be obtained using quantum annealing (QA). We show how to map the requirements for optimal splitting to a quadratic unconstrained binary optimization (QUBO) formulation and test the proposed formulation using a current D-Wave QPU. We show that the necessity to find an embedding of the QUBO on current D-Wave QPUs limits the problem size to under 200 buses and notably affects the time-to-solution. We finally discuss the implications of quantum hardware non-ideality on near term implementation in the simulation loop. |
| 536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
| 536 | _ | _ | |a QuGrids - Quantum-based Energy Grids (QuGrids20231101) |0 G:(MKW-NRW)QuGrids20231101 |c QuGrids20231101 |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Zhang, Junjie |0 P:(DE-Juel1)180837 |b 1 |
| 700 | 1 | _ | |a Calaza, Carlos D. Gonzalez |0 P:(DE-Juel1)171436 |b 2 |
| 700 | 1 | _ | |a Pesch, Thiemo |0 P:(DE-Juel1)142000 |b 3 |
| 700 | 1 | _ | |a Michielsen, Kristel |0 P:(DE-Juel1)138295 |b 4 |
| 700 | 1 | _ | |a Benigni, Andrea |0 P:(DE-Juel1)179029 |b 5 |e Corresponding author |u fzj |
| 773 | _ | _ | |a 10.1109/TPWRS.2025.3578243 |g Vol. 40, no. 6, p. 4958 - 4970 |0 PERI:(DE-600)2034320-6 |n 6 |p 4958 - 4970 |t IEEE transactions on power systems |v 40 |y 2025 |x 0885-8950 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1051618/files/Quantum_Annealing_Based_Power_Grid_Partitioning_for_Parallel_Simulation.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1051618 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)200120 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)180837 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)171436 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)142000 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)138295 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)179029 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2025-01-07 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2025-01-07 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b IEEE T POWER SYST : 2022 |d 2025-01-07 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-07 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2025-01-07 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b IEEE T POWER SYST : 2022 |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-07 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)ICE-1-20170217 |k ICE-1 |l Modellierung von Energiesystemen |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)ICE-1-20170217 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|