001051620 001__ 1051620
001051620 005__ 20260116204431.0
001051620 0247_ $$2doi$$a10.3389/fcomp.2025.1744088
001051620 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-00542
001051620 037__ $$aFZJ-2026-00542
001051620 082__ $$a004
001051620 1001_ $$0P:(DE-HGF)0$$aVert, Daniel$$b0
001051620 245__ $$aCorrection: Benchmarking quantum annealing with maximum cardinality matching problems
001051620 260__ $$aLausanne$$bFrontiers Media$$c2025
001051620 3367_ $$2DRIVER$$aarticle
001051620 3367_ $$2DataCite$$aOutput Types/Journal article
001051620 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768575485_21098
001051620 3367_ $$2BibTeX$$aARTICLE
001051620 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001051620 3367_ $$00$$2EndNote$$aJournal Article
001051620 520__ $$aWe benchmark Quantum Annealing (QA) vs. Simulated Annealing (SA) witha focus on the impact of the embedding of problems onto the differenttopologies of the D-Wave quantum annealers. The series of problems we studyare especially designed instances of the maximum cardinality matching problemthat are easy to solve classically but difficult for SA and, as found experimentally,not easy for QA either. In addition to using several D-Wave processors, wesimulate the QA process by numerically solving the time-dependent Schrödingerequation. We find that the embedded problems can be significantly moredifficult than the unembedded problems, and some parameters, such as thechain strength, can be very impactful for finding the optimal solution. Thus,finding a good embedding and optimal parameter values can improve theresults considerably. Interestingly, we find that although SA succeeds for theunembedded problems, the SA results obtained for the embedded versionscale quite poorly in comparison with what we can achieve on the D-Wavequantum annealers.
001051620 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001051620 536__ $$0G:(DE-Juel-1)aidas_20200731$$aAIDAS - Joint Virtual Laboratory for AI, Data Analytics and Scalable Simulation (aidas_20200731)$$caidas_20200731$$x1
001051620 536__ $$0G:(BMBF)390534769$$aEXC 2004: Matter and Light for Quantum Computing (ML4Q) (390534769)$$c390534769$$x2
001051620 536__ $$0G:(GEPRIS)390534769$$aDFG project G:(GEPRIS)390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x3
001051620 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001051620 7001_ $$0P:(DE-Juel1)167543$$aWillsch, Madita$$b1$$ufzj
001051620 7001_ $$0P:(DE-HGF)0$$aYenilen, Berat$$b2
001051620 7001_ $$0P:(DE-HGF)0$$aSirdey, Renaud$$b3
001051620 7001_ $$0P:(DE-HGF)0$$aLouise, Stéphane$$b4$$eCorresponding author
001051620 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b5$$eCorresponding author$$ufzj
001051620 773__ $$0PERI:(DE-600)3010036-7$$a10.3389/fcomp.2025.1744088$$gVol. 7, p. 1744088$$p1744088$$tFrontiers in computer science$$v7$$x2624-9898$$y2025
001051620 8564_ $$uhttps://juser.fz-juelich.de/record/1051620/files/Correction%20%28not%20the%20full%20article%29.pdf$$yOpenAccess
001051620 8564_ $$uhttps://juser.fz-juelich.de/record/1051620/files/Original%20publication.pdf$$yOpenAccess
001051620 909CO $$ooai:juser.fz-juelich.de:1051620$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001051620 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167543$$aForschungszentrum Jülich$$b1$$kFZJ
001051620 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b5$$kFZJ
001051620 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001051620 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12
001051620 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001051620 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-12
001051620 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT COMP SCI-SWITZ : 2022$$d2024-12-12
001051620 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-12-08T13:21:54Z
001051620 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-12-08T13:21:54Z
001051620 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-12
001051620 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12
001051620 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-12
001051620 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001051620 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-12-08T13:21:54Z
001051620 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-12
001051620 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12
001051620 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12
001051620 920__ $$lyes
001051620 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001051620 980__ $$ajournal
001051620 980__ $$aVDB
001051620 980__ $$aUNRESTRICTED
001051620 980__ $$aI:(DE-Juel1)JSC-20090406
001051620 9801_ $$aFullTexts