001     1051620
005     20260116204431.0
024 7 _ |a 10.3389/fcomp.2025.1744088
|2 doi
024 7 _ |a 10.34734/FZJ-2026-00542
|2 datacite_doi
037 _ _ |a FZJ-2026-00542
082 _ _ |a 004
100 1 _ |a Vert, Daniel
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Correction: Benchmarking quantum annealing with maximum cardinality matching problems
260 _ _ |a Lausanne
|c 2025
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1768575485_21098
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We benchmark Quantum Annealing (QA) vs. Simulated Annealing (SA) witha focus on the impact of the embedding of problems onto the differenttopologies of the D-Wave quantum annealers. The series of problems we studyare especially designed instances of the maximum cardinality matching problemthat are easy to solve classically but difficult for SA and, as found experimentally,not easy for QA either. In addition to using several D-Wave processors, wesimulate the QA process by numerically solving the time-dependent Schrödingerequation. We find that the embedded problems can be significantly moredifficult than the unembedded problems, and some parameters, such as thechain strength, can be very impactful for finding the optimal solution. Thus,finding a good embedding and optimal parameter values can improve theresults considerably. Interestingly, we find that although SA succeeds for theunembedded problems, the SA results obtained for the embedded versionscale quite poorly in comparison with what we can achieve on the D-Wavequantum annealers.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a AIDAS - Joint Virtual Laboratory for AI, Data Analytics and Scalable Simulation (aidas_20200731)
|0 G:(DE-Juel-1)aidas_20200731
|c aidas_20200731
|x 1
536 _ _ |a EXC 2004:  Matter and Light for Quantum Computing (ML4Q) (390534769)
|0 G:(BMBF)390534769
|c 390534769
|x 2
536 _ _ |a DFG project G:(GEPRIS)390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)
|0 G:(GEPRIS)390534769
|c 390534769
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Willsch, Madita
|0 P:(DE-Juel1)167543
|b 1
|u fzj
700 1 _ |a Yenilen, Berat
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sirdey, Renaud
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Louise, Stéphane
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.3389/fcomp.2025.1744088
|g Vol. 7, p. 1744088
|0 PERI:(DE-600)3010036-7
|p 1744088
|t Frontiers in computer science
|v 7
|y 2025
|x 2624-9898
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1051620/files/Correction%20%28not%20the%20full%20article%29.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1051620/files/Original%20publication.pdf
909 C O |o oai:juser.fz-juelich.de:1051620
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)167543
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)138295
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT COMP SCI-SWITZ : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-12-08T13:21:54Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-12-08T13:21:54Z
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-12-08T13:21:54Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21