001     1051639
005     20260120203622.0
024 7 _ |a https://doi.org/10.1101/2025.09.18.25336054
|2 doi
024 7 _ |a https://doi.org/10.1101/2025.09.18.25336054
|2 doi
024 7 _ |a 10.1101/2025.09.18.25336054
|2 doi
024 7 _ |a 10.34734/FZJ-2026-00553
|2 datacite_doi
037 _ _ |a FZJ-2026-00553
041 _ _ |a English
100 1 _ |a Nieto, Nicolas
|0 P:(DE-Juel1)194707
|b 0
|e Corresponding author
245 _ _ |a Machine learning models for early prognosis prediction in cardiogenic shock
260 _ _ |c 2025
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1768917957_10768
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Cardiogenic shock (CS) is a severe and frequent complication of acute myocardial infarction (AMI), necessitating rapid and accurate prognosis as-sessment to guide treatment and intensive care unit (ICU) resource allocation. We developed two machine learning models to predict 30-day outcomes following CS in AMI: an Admission model (using only data available at admission, like demography, comorbidities) and a Full model (incorporating additional laboratory values obtained within 24 hours). The models were trained on the CULPRIT-SHOCK dataset and externally validated using the eICU database. The Admission model achieved an out-of-sample AUC of 0.71 (95% CI: 0.6–0.83) in the development cohort and 0.68 in the validation cohort, while the Full model attained significantly higher performance, with AUCs of 0.80 (95% CI: 0.69–0.9) and 0.78, respectively. The Full model’s superior performance underscores the prognostic value of early laboratory trends, suggesting that dynamic data integration improves risk stratification. Both models outperformed existing risk scores across multiple metrics, provided well-calibrated probabilistic predictions, and demonstrated robustness to missing data. Additionally, they offered patient-level explainability, enhancing clinical interpretability. While promising, the models’ generalizability may be influenced by differences between the CULPRIT-SHOCK and eICU cohorts (e.g., demographics, CS severity thresholds); further validation in larger, prospective cohorts is warranted.
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Raimondo, Federico
|0 P:(DE-Juel1)185083
|b 1
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 2
700 1 _ |a Poess, Janine
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Desch, Steffen
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Feistritzer, Hans-Josef
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Lichtenberg, Artur
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Masyuk, Maryna
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Kelm, Malte
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Thiele, Holger
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Jung, Christian
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Patil, Kaustubh
|0 P:(DE-Juel1)172843
|b 11
|e Last author
773 _ _ |a 10.1101/2025.09.18.25336054
|y 2025
|t MedRxiv
856 4 _ |u https://juser.fz-juelich.de/record/1051639/files/Machine%20learning%20models%20for%20early%20prognosis%20prediction%20in%20cardiogenic%20shock%20-%20Nieto%202025.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1051639
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)194707
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)185083
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)172843
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 0
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21