001     1051653
005     20260120083626.0
024 7 _ |a 10.1149/MA2025-01381941mtgabs
|2 doi
024 7 _ |a 1091-8213
|2 ISSN
024 7 _ |a 2151-2043
|2 ISSN
024 7 _ |a 10.34734/FZJ-2026-00562
|2 datacite_doi
037 _ _ |a FZJ-2026-00562
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Wolf, Niklas
|0 P:(DE-Juel1)190997
|b 0
|u fzj
111 2 _ |a 247th ECS Meeting
|c Montreal, Québec
|d 2025-05-18 - 2025-05-22
|w Kanada
245 _ _ |a Impact of Membrane Electrode Assembly Conditioning on the Performance of Proton Exchange Membrane Electrolytic Cells: Insights into Short-Term and Long-Term Operation
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1768827857_9171
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a Proton Exchange Membrane Electrolysis is a promising technology for efficient hydrogen production, utilizing the electrolysis of water to generate hydrogen. The performance of Proton Exchange Membrane Electrolytic Cells (PEMECs) is strongly influenced by the conditioning of the Membrane Electrode Assembly (MEA), which serves as a critical step in preparing the MEA for optimal functionality. The conditioning process includes two steps. The pre-treatment, which involves hydrating and chemically or thermally activating the MEA, followed by a break-in procedure that stabilizes the electrochemical performance during initial operation.The conditioning strategies explored in this study include ex-situ and in-situ hydration, acidic treatment, and elevated temperature conditions during the pre-treatment step. The impact of pre-treatment conditions; mechanical, chemical, and thermal on the short-term electrochemical performance of Nafion™ N115-based MEAs highlight the importance of both the pre-treatment and break-in procedures in establishing consistent cell operation.The results show that in-situ pre-treatment allows the membrane to swell under constrained conditions post-assembly, significantly enhances the contact area between the MEA and the porous transport layers, reducing contact resistance and improving overall PEMEC performance. Moreover, acidic treatment and elevated temperature conditions further contribute to improved proton conductivity, leading to reduced Ohmic resistance and cell voltage.While the break-in procedure stabilizes the cell’s electrochemical performance in the short term, further investigation is conducted to evaluate how these conditioning protocols impact the long-term degradation mechanisms. This study presents preliminary findings on the durability of conditioned MEAs under continuous operation and explores how optimizing the conditioning process could contribute to enhanced long-term performance, paving the way for more reliable and efficient PEMEC systems in industrial applications.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
536 _ _ |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
|0 G:(DE-Juel1)HITEC-20170406
|c HITEC-20170406
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Javed, Ali
|0 P:(DE-Juel1)196699
|b 1
700 1 _ |a Treutlein, Leander
|0 P:(DE-Juel1)190785
|b 2
700 1 _ |a Kungl, Hans
|0 P:(DE-Juel1)157700
|b 3
700 1 _ |a Jodat, Eva
|0 P:(DE-Juel1)161579
|b 4
700 1 _ |a Karl, André
|0 P:(DE-Juel1)191359
|b 5
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 6
|u fzj
773 _ _ |a 10.1149/MA2025-01381941mtgabs
|0 PERI:(DE-600)2438749-6
|y 2025
|g Vol. MA2025-01, no. 38, p. 1941 - 1941
|x 2151-2043
856 4 _ |u https://iopscience.iop.org/article/10.1149/MA2025-01381941mtgabs/meta
856 4 _ |u https://juser.fz-juelich.de/record/1051653/files/247th_ECS_Meeting_Niklas_Wolf_V3.pdf
|y OpenAccess
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190997
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)190997
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)196699
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)190785
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)157700
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161579
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)191359
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21