001051901 001__ 1051901
001051901 005__ 20260119203220.0
001051901 037__ $$aFZJ-2026-00599
001051901 1001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b0$$eCorresponding author$$ufzj
001051901 1112_ $$aTransforming our Future: Quantum Information$$cLondon, online$$d2025-02-19 - 2025-02-20$$wUnited Kingdom
001051901 245__ $$aQuantum computing: From the basic concepts to the embedding in an HPC environment for application purposes
001051901 260__ $$c2025
001051901 3367_ $$033$$2EndNote$$aConference Paper
001051901 3367_ $$2DataCite$$aOther
001051901 3367_ $$2BibTeX$$aINPROCEEDINGS
001051901 3367_ $$2DRIVER$$aconferenceObject
001051901 3367_ $$2ORCID$$aLECTURE_SPEECH
001051901 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1768811342_20878$$xInvited
001051901 520__ $$aQuantum computing promises unprecedented possibilities for important computing tasks such as quantum simulations in chemistry and materials science or optimization and machine learning. With this potential, quantum computing is increasingly attracting interest from industry and scientific communities that use high performance computing (HPC) for their applications.Practical application requires the integration of quantum computers into existing HPC infrastructures in the form of quantum-classical hybrid computing models.The Jülich UNified Infrastructure for Quantum computing (JUNIQ), a manufacturer-independent quantum computing user facility established at the Jülich Supercomputing Centre (JSC) aims to address these needs.As an example, we present benchmarking results for the quantum approximate optimization algorithm (QAOA) emulated on a supercomputer and for the D-Wave quantum annealers for the tail assignment problem, a planning problem from aircraft industry.
001051901 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001051901 536__ $$0G:(DE-HGF)POF4-5122$$a5122 - Future Computing & Big Data Systems (POF4-512)$$cPOF4-512$$fPOF IV$$x1
001051901 536__ $$0G:(EU-Grant)101018180$$aHPCQS - High Performance Computer and Quantum Simulator hybrid (101018180)$$c101018180$$fH2020-JTI-EuroHPC-2020-2$$x2
001051901 536__ $$0G:(DE-Juel1)BMBF-13N16149$$aBMBF 13N16149 - QSolid - Quantencomputer im Festkörper (BMBF-13N16149)$$cBMBF-13N16149$$x3
001051901 536__ $$0G:(EU-Grant)101113946$$aOpenSuperQPlus100 - Open Superconducting Quantum Computers (OpenSuperQPlus) (101113946)$$c101113946$$fHORIZON-CL4-2022-QUANTUM-01-SGA$$x4
001051901 536__ $$0G:(DE-Juel-1)76.06.04.-000157$$aEPIQ - Entwicklungspartnerschaft Ionenfallen-Quantencomputer in NRW (76.06.04.-000157)$$c76.06.04.-000157$$x5
001051901 8564_ $$uhttps://royalsociety.org/science-events-and-lectures/2025/02/quantum-information-tof/
001051901 909CO $$ooai:juser.fz-juelich.de:1051901$$popenaire$$pVDB$$pec_fundedresources
001051901 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b0$$kFZJ
001051901 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001051901 9131_ $$0G:(DE-HGF)POF4-512$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5122$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vSupercomputing & Big Data Infrastructures$$x1
001051901 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001051901 980__ $$aconf
001051901 980__ $$aVDB
001051901 980__ $$aI:(DE-Juel1)JSC-20090406
001051901 980__ $$aUNRESTRICTED