001     1051901
005     20260119203220.0
037 _ _ |a FZJ-2026-00599
100 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Transforming our Future: Quantum Information
|c London, online
|d 2025-02-19 - 2025-02-20
|w United Kingdom
245 _ _ |a Quantum computing: From the basic concepts to the embedding in an HPC environment for application purposes
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1768811342_20878
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a Quantum computing promises unprecedented possibilities for important computing tasks such as quantum simulations in chemistry and materials science or optimization and machine learning. With this potential, quantum computing is increasingly attracting interest from industry and scientific communities that use high performance computing (HPC) for their applications.Practical application requires the integration of quantum computers into existing HPC infrastructures in the form of quantum-classical hybrid computing models.The Jülich UNified Infrastructure for Quantum computing (JUNIQ), a manufacturer-independent quantum computing user facility established at the Jülich Supercomputing Centre (JSC) aims to address these needs.As an example, we present benchmarking results for the quantum approximate optimization algorithm (QAOA) emulated on a supercomputer and for the D-Wave quantum annealers for the tail assignment problem, a planning problem from aircraft industry.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 5122 - Future Computing & Big Data Systems (POF4-512)
|0 G:(DE-HGF)POF4-5122
|c POF4-512
|f POF IV
|x 1
536 _ _ |a HPCQS - High Performance Computer and Quantum Simulator hybrid (101018180)
|0 G:(EU-Grant)101018180
|c 101018180
|f H2020-JTI-EuroHPC-2020-2
|x 2
536 _ _ |a BMBF 13N16149 - QSolid - Quantencomputer im Festkörper (BMBF-13N16149)
|0 G:(DE-Juel1)BMBF-13N16149
|c BMBF-13N16149
|x 3
536 _ _ |a OpenSuperQPlus100 - Open Superconducting Quantum Computers (OpenSuperQPlus) (101113946)
|0 G:(EU-Grant)101113946
|c 101113946
|f HORIZON-CL4-2022-QUANTUM-01-SGA
|x 4
536 _ _ |a EPIQ - Entwicklungspartnerschaft Ionenfallen-Quantencomputer in NRW (76.06.04.-000157)
|0 G:(DE-Juel-1)76.06.04.-000157
|c 76.06.04.-000157
|x 5
856 4 _ |u https://royalsociety.org/science-events-and-lectures/2025/02/quantum-information-tof/
909 C O |o oai:juser.fz-juelich.de:1051901
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)138295
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-512
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Supercomputing & Big Data Infrastructures
|9 G:(DE-HGF)POF4-5122
|x 1
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21