001051977 001__ 1051977
001051977 005__ 20260120203623.0
001051977 0247_ $$2doi$$a10.1038/s41589-025-01929-w
001051977 0247_ $$2ISSN$$a1552-4450
001051977 0247_ $$2ISSN$$a1552-4469
001051977 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-00658
001051977 037__ $$aFZJ-2026-00658
001051977 082__ $$a570
001051977 1001_ $$00000-0001-9797-6939$$aRettie, Stephen A.$$b0
001051977 245__ $$aAccurate de novo design of high-affinity protein-binding macrocycles using deep learning
001051977 260__ $$aBasingstoke$$bNature Publishing Group$$c2025
001051977 3367_ $$2DRIVER$$aarticle
001051977 3367_ $$2DataCite$$aOutput Types/Journal article
001051977 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768830503_5186
001051977 3367_ $$2BibTeX$$aARTICLE
001051977 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001051977 3367_ $$00$$2EndNote$$aJournal Article
001051977 520__ $$aDeveloping macrocyclic binders to therapeutic proteins typically relies on large-scale screening methods that are resource intensive and provide little control over binding mode. Despite progress in protein design, there are currently no robust approaches for de novo design of protein-binding macrocycles. Here we introduce RFpeptides, a denoising diffusion-based pipeline for designing macrocyclic binders against protein targets of interest. We tested 20 or fewer designed macrocycles against each of four diverse proteins and obtained binders with medium to high affinity against all targets. For one of the targets, Rhombotarget A (RbtA), we designed a high-affinity binder (Kd < 10 nM) despite starting from the predicted target structure. X-ray structures for macrocycle-bound myeloid cell leukemia 1, γ-aminobutyric acid type A receptor-associated protein and RbtA complexes match closely with the computational models, with a Cα root-mean-square deviation < 1.5 Å to the design models. RFpeptides provides a framework for rapid and custom design of macrocyclic peptides for diagnostic and therapeutic applications.
001051977 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001051977 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001051977 7001_ $$00000-0001-6425-8391$$aJuergens, David$$b1
001051977 7001_ $$0P:(DE-HGF)0$$aAdebomi, Victor$$b2
001051977 7001_ $$00000-0002-2118-2195$$aBueso, Yensi Flores$$b3
001051977 7001_ $$0P:(DE-HGF)0$$aZhao, Qinqin$$b4
001051977 7001_ $$0P:(DE-HGF)0$$aLeveille, Alexandria N.$$b5
001051977 7001_ $$00000-0002-8795-9614$$aLiu, Andi$$b6
001051977 7001_ $$00000-0001-9473-2912$$aBera, Asim K.$$b7
001051977 7001_ $$aWilms, Joana A.$$b8
001051977 7001_ $$0P:(DE-Juel1)181095$$aÜffing, Alina$$b9
001051977 7001_ $$00000-0001-5487-0499$$aKang, Alex$$b10
001051977 7001_ $$0P:(DE-HGF)0$$aBrackenbrough, Evans$$b11
001051977 7001_ $$0P:(DE-HGF)0$$aLamb, Mila$$b12
001051977 7001_ $$00000-0003-0313-6248$$aGerben, Stacey R.$$b13
001051977 7001_ $$00000-0003-1560-6673$$aMurray, Analisa$$b14
001051977 7001_ $$00000-0003-4874-5557$$aLevine, Paul M.$$b15
001051977 7001_ $$00009-0006-9798-852X$$aSchneider, Maika$$b16
001051977 7001_ $$0P:(DE-HGF)0$$aVasireddy, Vibha$$b17
001051977 7001_ $$0P:(DE-HGF)0$$aOvchinnikov, Sergey$$b18
001051977 7001_ $$0P:(DE-Juel1)131988$$aWeiergräber, Oliver H.$$b19$$ufzj
001051977 7001_ $$0P:(DE-Juel1)132029$$aWillbold, Dieter$$b20
001051977 7001_ $$00000-0003-2878-6781$$aKritzer, Joshua A.$$b21
001051977 7001_ $$00000-0002-5417-4861$$aMougous, Joseph D.$$b22
001051977 7001_ $$00000-0001-7896-6217$$aBaker, David$$b23$$eCorresponding author
001051977 7001_ $$00000-0002-7524-8938$$aDiMaio, Frank$$b24$$eCorresponding author
001051977 7001_ $$00000-0001-6554-2335$$aBhardwaj, Gaurav$$b25$$eCorresponding author
001051977 773__ $$0PERI:(DE-600)2190276-8$$a10.1038/s41589-025-01929-w$$gVol. 21, no. 12, p. 1948 - 1956$$n12$$p1948 - 1956$$tNature chemical biology$$v21$$x1552-4450$$y2025
001051977 8564_ $$uhttps://juser.fz-juelich.de/record/1051977/files/s41589-025-01929-w.pdf$$yOpenAccess
001051977 909CO $$ooai:juser.fz-juelich.de:1051977$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001051977 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131988$$aForschungszentrum Jülich$$b19$$kFZJ
001051977 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132029$$aForschungszentrum Jülich$$b20$$kFZJ
001051977 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001051977 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
001051977 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-20
001051977 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-20
001051977 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-20
001051977 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-20
001051977 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT CHEM BIOL : 2022$$d2024-12-20
001051977 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT CHEM BIOL : 2022$$d2024-12-20
001051977 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-20
001051977 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2024-12-20$$wger
001051977 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-20
001051977 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
001051977 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001051977 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-20
001051977 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
001051977 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001051977 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-20$$wger
001051977 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
001051977 920__ $$lyes
001051977 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
001051977 980__ $$ajournal
001051977 980__ $$aVDB
001051977 980__ $$aUNRESTRICTED
001051977 980__ $$aI:(DE-Juel1)IBI-7-20200312
001051977 9801_ $$aFullTexts