001     1051977
005     20260120203623.0
024 7 _ |a 10.1038/s41589-025-01929-w
|2 doi
024 7 _ |a 1552-4450
|2 ISSN
024 7 _ |a 1552-4469
|2 ISSN
024 7 _ |a 10.34734/FZJ-2026-00658
|2 datacite_doi
037 _ _ |a FZJ-2026-00658
082 _ _ |a 570
100 1 _ |a Rettie, Stephen A.
|0 0000-0001-9797-6939
|b 0
245 _ _ |a Accurate de novo design of high-affinity protein-binding macrocycles using deep learning
260 _ _ |a Basingstoke
|c 2025
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1768830503_5186
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Developing macrocyclic binders to therapeutic proteins typically relies on large-scale screening methods that are resource intensive and provide little control over binding mode. Despite progress in protein design, there are currently no robust approaches for de novo design of protein-binding macrocycles. Here we introduce RFpeptides, a denoising diffusion-based pipeline for designing macrocyclic binders against protein targets of interest. We tested 20 or fewer designed macrocycles against each of four diverse proteins and obtained binders with medium to high affinity against all targets. For one of the targets, Rhombotarget A (RbtA), we designed a high-affinity binder (Kd < 10 nM) despite starting from the predicted target structure. X-ray structures for macrocycle-bound myeloid cell leukemia 1, γ-aminobutyric acid type A receptor-associated protein and RbtA complexes match closely with the computational models, with a Cα root-mean-square deviation < 1.5 Å to the design models. RFpeptides provides a framework for rapid and custom design of macrocyclic peptides for diagnostic and therapeutic applications.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Juergens, David
|0 0000-0001-6425-8391
|b 1
700 1 _ |a Adebomi, Victor
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bueso, Yensi Flores
|0 0000-0002-2118-2195
|b 3
700 1 _ |a Zhao, Qinqin
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Leveille, Alexandria N.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Liu, Andi
|0 0000-0002-8795-9614
|b 6
700 1 _ |a Bera, Asim K.
|0 0000-0001-9473-2912
|b 7
700 1 _ |a Wilms, Joana A.
|b 8
700 1 _ |a Üffing, Alina
|0 P:(DE-Juel1)181095
|b 9
700 1 _ |a Kang, Alex
|0 0000-0001-5487-0499
|b 10
700 1 _ |a Brackenbrough, Evans
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Lamb, Mila
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Gerben, Stacey R.
|0 0000-0003-0313-6248
|b 13
700 1 _ |a Murray, Analisa
|0 0000-0003-1560-6673
|b 14
700 1 _ |a Levine, Paul M.
|0 0000-0003-4874-5557
|b 15
700 1 _ |a Schneider, Maika
|0 0009-0006-9798-852X
|b 16
700 1 _ |a Vasireddy, Vibha
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Ovchinnikov, Sergey
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Weiergräber, Oliver H.
|0 P:(DE-Juel1)131988
|b 19
|u fzj
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 20
700 1 _ |a Kritzer, Joshua A.
|0 0000-0003-2878-6781
|b 21
700 1 _ |a Mougous, Joseph D.
|0 0000-0002-5417-4861
|b 22
700 1 _ |a Baker, David
|0 0000-0001-7896-6217
|b 23
|e Corresponding author
700 1 _ |a DiMaio, Frank
|0 0000-0002-7524-8938
|b 24
|e Corresponding author
700 1 _ |a Bhardwaj, Gaurav
|0 0000-0001-6554-2335
|b 25
|e Corresponding author
773 _ _ |a 10.1038/s41589-025-01929-w
|g Vol. 21, no. 12, p. 1948 - 1956
|0 PERI:(DE-600)2190276-8
|n 12
|p 1948 - 1956
|t Nature chemical biology
|v 21
|y 2025
|x 1552-4450
856 4 _ |u https://juser.fz-juelich.de/record/1051977/files/s41589-025-01929-w.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1051977
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 19
|6 P:(DE-Juel1)131988
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 20
|6 P:(DE-Juel1)132029
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-20
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT CHEM BIOL : 2022
|d 2024-12-20
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NAT CHEM BIOL : 2022
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-20
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2024-12-20
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-20
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21