| Home > Publications database > Accurate de novo design of high-affinity protein-binding macrocycles using deep learning > print |
| 001 | 1051977 | ||
| 005 | 20260120203623.0 | ||
| 024 | 7 | _ | |a 10.1038/s41589-025-01929-w |2 doi |
| 024 | 7 | _ | |a 1552-4450 |2 ISSN |
| 024 | 7 | _ | |a 1552-4469 |2 ISSN |
| 024 | 7 | _ | |a 10.34734/FZJ-2026-00658 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2026-00658 |
| 082 | _ | _ | |a 570 |
| 100 | 1 | _ | |a Rettie, Stephen A. |0 0000-0001-9797-6939 |b 0 |
| 245 | _ | _ | |a Accurate de novo design of high-affinity protein-binding macrocycles using deep learning |
| 260 | _ | _ | |a Basingstoke |c 2025 |b Nature Publishing Group |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1768830503_5186 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Developing macrocyclic binders to therapeutic proteins typically relies on large-scale screening methods that are resource intensive and provide little control over binding mode. Despite progress in protein design, there are currently no robust approaches for de novo design of protein-binding macrocycles. Here we introduce RFpeptides, a denoising diffusion-based pipeline for designing macrocyclic binders against protein targets of interest. We tested 20 or fewer designed macrocycles against each of four diverse proteins and obtained binders with medium to high affinity against all targets. For one of the targets, Rhombotarget A (RbtA), we designed a high-affinity binder (Kd < 10 nM) despite starting from the predicted target structure. X-ray structures for macrocycle-bound myeloid cell leukemia 1, γ-aminobutyric acid type A receptor-associated protein and RbtA complexes match closely with the computational models, with a Cα root-mean-square deviation < 1.5 Å to the design models. RFpeptides provides a framework for rapid and custom design of macrocyclic peptides for diagnostic and therapeutic applications. |
| 536 | _ | _ | |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524) |0 G:(DE-HGF)POF4-5241 |c POF4-524 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Juergens, David |0 0000-0001-6425-8391 |b 1 |
| 700 | 1 | _ | |a Adebomi, Victor |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Bueso, Yensi Flores |0 0000-0002-2118-2195 |b 3 |
| 700 | 1 | _ | |a Zhao, Qinqin |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Leveille, Alexandria N. |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Liu, Andi |0 0000-0002-8795-9614 |b 6 |
| 700 | 1 | _ | |a Bera, Asim K. |0 0000-0001-9473-2912 |b 7 |
| 700 | 1 | _ | |a Wilms, Joana A. |b 8 |
| 700 | 1 | _ | |a Üffing, Alina |0 P:(DE-Juel1)181095 |b 9 |
| 700 | 1 | _ | |a Kang, Alex |0 0000-0001-5487-0499 |b 10 |
| 700 | 1 | _ | |a Brackenbrough, Evans |0 P:(DE-HGF)0 |b 11 |
| 700 | 1 | _ | |a Lamb, Mila |0 P:(DE-HGF)0 |b 12 |
| 700 | 1 | _ | |a Gerben, Stacey R. |0 0000-0003-0313-6248 |b 13 |
| 700 | 1 | _ | |a Murray, Analisa |0 0000-0003-1560-6673 |b 14 |
| 700 | 1 | _ | |a Levine, Paul M. |0 0000-0003-4874-5557 |b 15 |
| 700 | 1 | _ | |a Schneider, Maika |0 0009-0006-9798-852X |b 16 |
| 700 | 1 | _ | |a Vasireddy, Vibha |0 P:(DE-HGF)0 |b 17 |
| 700 | 1 | _ | |a Ovchinnikov, Sergey |0 P:(DE-HGF)0 |b 18 |
| 700 | 1 | _ | |a Weiergräber, Oliver H. |0 P:(DE-Juel1)131988 |b 19 |u fzj |
| 700 | 1 | _ | |a Willbold, Dieter |0 P:(DE-Juel1)132029 |b 20 |
| 700 | 1 | _ | |a Kritzer, Joshua A. |0 0000-0003-2878-6781 |b 21 |
| 700 | 1 | _ | |a Mougous, Joseph D. |0 0000-0002-5417-4861 |b 22 |
| 700 | 1 | _ | |a Baker, David |0 0000-0001-7896-6217 |b 23 |e Corresponding author |
| 700 | 1 | _ | |a DiMaio, Frank |0 0000-0002-7524-8938 |b 24 |e Corresponding author |
| 700 | 1 | _ | |a Bhardwaj, Gaurav |0 0000-0001-6554-2335 |b 25 |e Corresponding author |
| 773 | _ | _ | |a 10.1038/s41589-025-01929-w |g Vol. 21, no. 12, p. 1948 - 1956 |0 PERI:(DE-600)2190276-8 |n 12 |p 1948 - 1956 |t Nature chemical biology |v 21 |y 2025 |x 1552-4450 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1051977/files/s41589-025-01929-w.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1051977 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 19 |6 P:(DE-Juel1)131988 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 20 |6 P:(DE-Juel1)132029 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5241 |x 0 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-20 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-20 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-20 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2024-12-20 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-20 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT CHEM BIOL : 2022 |d 2024-12-20 |
| 915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b NAT CHEM BIOL : 2022 |d 2024-12-20 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2024-12-20 |
| 915 | _ | _ | |a DEAL Nature |0 StatID:(DE-HGF)3003 |2 StatID |d 2024-12-20 |w ger |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-20 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-20 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-20 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-20 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-20 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-20 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBI-7-20200312 |k IBI-7 |l Strukturbiochemie |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|