001052022 001__ 1052022
001052022 005__ 20260120203625.0
001052022 0247_ $$2doi$$a10.5281/ZENODO.17169870
001052022 037__ $$aFZJ-2026-00695
001052022 1001_ $$0P:(DE-Juel1)176305$$aLinssen, Charl$$b0$$ufzj
001052022 245__ $$aODE-toolbox: Automatic selection and generation of integration schemes for systems of ordinary differential equations (v2.5.11)
001052022 250__ $$a2.5.11
001052022 260__ $$c2025
001052022 3367_ $$2DCMI$$aSoftware
001052022 3367_ $$0PUB:(DE-HGF)33$$2PUB:(DE-HGF)$$aSoftware$$bsware$$msware$$s1768904497_3298
001052022 3367_ $$2BibTeX$$aMISC
001052022 3367_ $$06$$2EndNote$$aComputer Program
001052022 3367_ $$2ORCID$$aOTHER
001052022 3367_ $$2DataCite$$aSoftware
001052022 520__ $$aChoosing the optimal solver for systems of ordinary differential equations (ODEs) is a critical step in dynamical systems simulation. ODE-toolbox is a Python package that assists in solver benchmarking, and recommends solvers on the basis of a set of user-configurable heuristics. For all dynamical equations that admit an analytic solution, ODE-toolbox generates propagator matrices that allow the solution to be calculated at machine precision. For all others, first-order update expressions are returned based on the Jacobian matrix. In addition to continuous dynamics, discrete events can be used to model instantaneous changes in system state, such as a neuronal action potential. These can be generated by the system under test, as well as applied as external stimuli, making ODE-toolbox particularly well-suited for applications in computational neuroscience.
001052022 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001052022 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x1
001052022 588__ $$aDataset connected to DataCite
001052022 7001_ $$0P:(DE-HGF)0$$aJain, Shraddha$$b1
001052022 7001_ $$0P:(DE-Juel1)186954$$aBabu, Pooja N.$$b2
001052022 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b3
001052022 7001_ $$0P:(DE-Juel1)142538$$aEppler, Jochen M.$$b4
001052022 773__ $$a10.5281/ZENODO.17169870
001052022 909CO $$ooai:juser.fz-juelich.de:1052022$$pVDB
001052022 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176305$$aForschungszentrum Jülich$$b0$$kFZJ
001052022 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186954$$aForschungszentrum Jülich$$b2$$kFZJ
001052022 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b3$$kFZJ
001052022 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001052022 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001052022 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x1
001052022 980__ $$asware
001052022 980__ $$aVDB
001052022 980__ $$aI:(DE-Juel1)JSC-20090406
001052022 980__ $$aI:(DE-Juel1)IAS-6-20130828
001052022 980__ $$aUNRESTRICTED