001     1052022
005     20260120203625.0
024 7 _ |a 10.5281/ZENODO.17169870
|2 doi
037 _ _ |a FZJ-2026-00695
100 1 _ |a Linssen, Charl
|0 P:(DE-Juel1)176305
|b 0
|u fzj
245 _ _ |a ODE-toolbox: Automatic selection and generation of integration schemes for systems of ordinary differential equations (v2.5.11)
250 _ _ |a 2.5.11
260 _ _ |c 2025
336 7 _ |a Software
|2 DCMI
336 7 _ |a Software
|b sware
|m sware
|0 PUB:(DE-HGF)33
|s 1768904497_3298
|2 PUB:(DE-HGF)
336 7 _ |a MISC
|2 BibTeX
336 7 _ |a Computer Program
|0 6
|2 EndNote
336 7 _ |a OTHER
|2 ORCID
336 7 _ |a Software
|2 DataCite
520 _ _ |a Choosing the optimal solver for systems of ordinary differential equations (ODEs) is a critical step in dynamical systems simulation. ODE-toolbox is a Python package that assists in solver benchmarking, and recommends solvers on the basis of a set of user-configurable heuristics. For all dynamical equations that admit an analytic solution, ODE-toolbox generates propagator matrices that allow the solution to be calculated at machine precision. For all others, first-order update expressions are returned based on the Jacobian matrix. In addition to continuous dynamics, discrete events can be used to model instantaneous changes in system state, such as a neuronal action potential. These can be generated by the system under test, as well as applied as external stimuli, making ODE-toolbox particularly well-suited for applications in computational neuroscience.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a SLNS - SimLab Neuroscience (Helmholtz-SLNS)
|0 G:(DE-Juel1)Helmholtz-SLNS
|c Helmholtz-SLNS
|x 1
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Jain, Shraddha
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Babu, Pooja N.
|0 P:(DE-Juel1)186954
|b 2
700 1 _ |a Morrison, Abigail
|0 P:(DE-Juel1)151166
|b 3
700 1 _ |a Eppler, Jochen M.
|0 P:(DE-Juel1)142538
|b 4
773 _ _ |a 10.5281/ZENODO.17169870
909 C O |o oai:juser.fz-juelich.de:1052022
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176305
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)186954
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)151166
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 1
980 _ _ |a sware
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21