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Occasional extreme rainfall events significantly influence colloid dynamics and nutrient cycling in the hyper-arid
Atacama Desert. We hypothesized that the response of water-dispersible soil colloids (WDCs, <300 nm) and their
associated phosphorus (WDC-P) dynamics to water addition is controlled by soil aggregation/disintegration and
transport processes influenced by soil age. We conducted an irrigation experiment (44.8 mm h™? for 30 min) on
an alluvial fan system at 1480 m a.s.L. in the Paposo that is characterized by two sections of different age. Soil
aggregates and WDCs were analyzed before and after irrigation event using dry sieving and asymmetric flow
field-flow fractionation (AF4). Although total WDCs and sub-fractions did not show statistically significant
changes, full infiltration and lateral subsurface flow indicated that mobilization occurred. A negative correlation
between WDCs and mean weight diameter (MWD) suggests that aggregate disintegration released colloids, which
may have been offset by transport and implying a dynamic balance. This balance varied with sediment age and
weathering. In the younger surface (0-1 cm), raindrop impact likely released fine colloids (FCs, 24-210 nm) by
breaking weak aggregates, while ~32 % of deeper-layer WDCs (>1 cm) were mobilized or aggregated. In
contrast, the older surface showed WDCs decline, likely due to higher clay content (7 %) and aggregate stability.
Below 1 cm, swelling and clay dispersion contributed to WDCs accumulation. Soil age also affected WDC and
nano-colloid (NCs, 0.6-24 nm) composition. Older soils were enriched in Al, Fe, and Si. Irrigation partially
altered these patterns, increasing NC-Al in the younger fan. Notably, NC-P increased despite declining NCs, likely
due to enhanced binding with Al (hydr)oxides, suggesting NC-P dynamics are governed by both content and
composition of WDCs. These results highlight sediment age-dependent responses of WDCs and WDC-P to short-
term water inputs and underscore their role in shaping nutrient fluxes and soil resilience in arid environments.

1. Introduction

Soil colloids primarily consist of a mixture or complexes of phyllo-
silicates, hydrous oxides of Si, Fe, and Al, and natural organic matter
(Jiang et al., 2015; Missong et al., 2018a; Schumacher et al., 2005). They
are recognized as the most chemically active size fraction in soils, with
diameters ranging from 1 to 10° nm (Said-Pullicino et al., 2021;

VandeVoort et al., 2013). Among them, water-dispersible colloids
(WDCs, <500 nm) exhibit a strong tendency to disperse and transport
within soils when water is present (Jiang et al., 2015; Missong et al.,
2018a). WDCs have a high specific surface area and can act as sinks for
nutrients such as phosphorus (P) and contaminants due to their strong
adsorption characteristics (Ilg et al., 2008; Siemens et al., 2004; Yu et al.,
2024). WDCs therefore play a fundamental role in soil fertility and
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environmental governance (Menezes-Blackburn et al., 2021; Tian et al.,
2023; Weber et al., 2009). The dynamics of WDCs and their associated P
(WDC-P) have been extensively studied in moisture-rich ecosystems
such as forest soils (Missong et al., 2018b; Tian et al., 2023; Wang et al.,
2020Db), arable lands (Jiang et al., 2015; Li et al., 2021a; Pan et al., 2023;
Regelink et al., 2014), grasslands (Jiang et al., 2017), floodplains, and
stream waters (Baken et al., 20164, b; Gottselig et al., 2014, 2017; Weber
et al., 2009). By contrast, the behavior of WDCs and WDC-P in hyper-
arid environments—such as deserts—remains largely overlooked,
despite the fact that even occassional and short-term water inputs (e.g.,
rainfall or irrigation) can rapidly mobilize soil colloids, causing erosion
and nutrient cycling (Dunai et al., 2020). This is particularly critical in
sensitive landscapes like the Chinese Loess Plateau, where fine particles,
including WDCs, play an important role in soil degradation and down-
stream agricultural productivity (Liu et al., 2019; Wang et al., 2014).
Therefore, understanding how WDCs and WDC-P respond to occasional
rainfall event in arid regions is essential for predicting landform evo-
lution, managing soil resources, and maintaining effective nutrient
cycling under conditions of extreme water scarcity. Notably, in arid soils
like those of the Atacama Desert, P is predominantly associated with
colloids smaller than 300 nm (Moradi et al., 2020; Sun et al., 2023),
which are also characterized by higher reactivity and mobility under
episodic water inputs. To better capture the dynamics of this key frac-
tion, we defined WDCs in this study as <300 nm, instead of the con-
ventional <500 nm.

In arid and semi-arid regions, where vegetation is sparse or absent,
water movement is governed primarily by evaporation, infiltration, and
run-off (Meadows et al., 2008; Vereecken et al., 2022). Infiltration and
run-off facilitate the lateral and downward transport of particles
following rainfall or irrigation. In contrast, strong evaporation in desert
systems drives upward water fluxes, carrying dissolved and colloidal
particles toward the surface and leading to the accumulation of salt ions
and WDCs in upper soil layers (Moradi et al., 2020; Sun et al., 2023;
Voigt et al., 2020). This upward movement induces the formation of
hardened layers or crusts, thereby altering soil structure and reducing
permeability over time (Arens et al., 2021; Arenas-Diaz et al., 2022). In
fact, these hydrological processes not only control the spatial redistri-
bution of WDCs but also contribute to their mobilization by facilitating
the breakdown of soil aggregates (Kjaergaard et al., 2004; Krause et al.,
2020; Mohanty et al.,, 2015, 2016). Three primary mechanisms
responsible for the breakdown of soil aggregates and thus WDC release
include splash erosion caused by raindrops, slaking and swelling, and
physicochemical weathering (Fernandez-Raga et al., 2017; Kjaergaard
et al., 2004; Liu et al., 2021). Raindrop splash on the soil surface is the
first step for soil erosion by water, which is influenced by rainfall in-
tensity and quantity as well as soil properties such as moisture, organic
matter content, infiltration capacity, texture, and structure (Ayoubi
et al., 2022; Hu et al., 2018; Li et al., 2021b). Slaking occurs when soil
aggregates are unable to withstand the stress caused by rapid water
uptake. The stress primarily originates from two sources: clay minerals
swelling as water is absorbed, and internal pressure due to compressed
air bubbles as water is drawn into small soil pores (Fajardo et al., 2016;
Jones et al., 2021; Reichert et al., 2009). Indeed, clay content and soil
structure can affect the slaking process, thus leading to the formation of
particles on the macro and micro scales that facilitate water penetration
(Artieda and Herrero, 2003). In contrast, aggregate destruction and the
generation of fine particles during heavy rainfall contribute to the
clogging of soil pores and the formation of crust, especially under dry
conditions (Li et al., 2018). These phenomena subsequently reduce the
infiltration capacity of the soil, leading to an increase in surface run-off
(Vereecken et al., 2022), which can result in the loss of WDCs and WDC-
P. Overall, in hyper-arid regions, the interplay between water-driven
aggregate breakdown and soil hydraulic behavior has important but
understudied implications for fine particle dynamics and nutrient
cycling. During these processes, sediment age—through its control on
clay content, surface sealing, and soil texture—emerges as a key factor
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shaping the sensitivity of soils to these processes (Hartmann et al., 2022;
Walk et al., 2023).

In arid regions, water scarcity severely limits the chemical weath-
ering of primary minerals and restricts the occurrence and spread of
microbial life. Consequently, the soil P cycling is inhibited, resulting in
P-limited ecosystems (Shen et al., 2020; Sun et al., 2024). However, P is
often enriched in the WDCs, potentially through OC-Ca-P associations or
by binding with Fe/Al (hydr)oxides or clay minerals (Wang et al.,
2020b; Sun et al., 2023). Therefore, even in soils with sparse vegetation
and limited biological activity, WDC-P can accumulate to relatively high
concentrations, while total soil P remains comparable to that of sur-
rounding areas (Moradi et al., 2020; Sun et al., 2023). This makes WDC-
P a potentially more sensitive indicator of nutrient availability and even
early life-supporting conditions. During prolonged dry periods, WDC-P
generally follows a similar vertical distribution as WDCs accumulating
in deeper soil layers in the absence of vegetation, and near the surface
where sparse plant growth occurs (Moradi et al., 2020; Sun et al., 2023).
However, occasional water availability triggers biotic processes that
significantly impact on its cycling (Ewing et al., 2007; Knief et al., 2020;
Wang et al., 2021a). These events may influence the mobilization and
transformation of WDCs through chemical weathering, aggrega-
tion/dispersion, potentially altering their composition and, in turn, P
associations (Gu et al., 2018; Wang et al., 2024). Therefore, whether
WDC-P exhibits a similar trend with WDCs is unclear, highlighting the
need for further investigation into its dynamics under water disturbance.

To explore how short-term water availability affects the behavior of
WDCs and WDC-P in hyper-arid environments, we conducted an irri-
gation experiment in a multi-phase alluvial fan system in the Atacama
Desert, which is one of the oldest and driest deserts on Earth. Under-
standing how soil functions, particularly in terms of biogeochemical P
cycling, adapts to extreme water scarcity and excess events in the Ata-
cama Desert provides valuable insights to address the ecological chal-
lenges posed by global desertification and climate change, as well as for
defining the limits of life on Earth (Tian et al., 2023; Moradi et al., 2020;
Sun et al., 2023). The study focused on two soil sections formed during
distinct phases of alluvial fan development: a younger fan section (~14
ka), where active hydrological pathways allow for fluvial processes and
colloid mobilization, and an older fan section (~56 ka), where long-term
surface stabilization and crust formation inhibit water infiltration and
particle transport. By analyzing WDCs and WDC-P dynamics in the
upper soil layers (0-15 cm) before and after irrigation, we aimed to
determine (1) whether WDC dynamics differ between the two sections,
(2) how these differences relate to pedogenic properties such as clay
content and soil structure, and (3) whether WDC-P responds in parallel
with changes in WDC dynamics. We hypothesized that WDCs would be
more mobile in the younger fan due to higher permeability and weaker
aggregation, while the older fan would show limited response due to
structural resistance linked to advanced weathering. Furthermore, we
hypothesized that WDC-P may exhibit a response distinct from that of
WDCs under water disturbance, possibly due to changes in WDC
composition, which affect the nature and strength of P associations.

2. Methods and materials
2.1. The study site

The Atacama Desert in Chile, known for its extreme aridity and
intense ultraviolet radiation, serves as an ideal analogue for tracing life
in harsh terrestrial environments on Earth and Mars (Davis et al., 2009;
Eshel et al., 2021; Georgiou et al., 2015). The Atacama Desert soil pri-
marily forms through the accumulation of atmospheric dust deposition.
The dynamics of fine particles, especially colloids therefore play a
crucial role in shaping the topographic features and influencing element
accumulation and nutrient cycling (Arenas-Diaz et al., 2022; Ewing
et al., 2006; Li et al., 2019). Occasional rainfall events occurring during
the El Nino-Southern Oscillation (ENSO) every few decades are one of
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the major water sources for the region, resulting not only in the initia-
tion of life but also facilitating unique landscape evolution processes
(Cabré et al., 2020; Houston, 2006b; Jordan et al., 2020). In the Paposo
region (approximately 25°0'52"S, 70°20'8"'W, 1480 m a. s. L.) (Fig. 1),
such rainfall events have shaped an alluvial fan system, which is selected
as the study site. The climate at the site is classified as hyper-arid (aridity
index: 1.2) with a mean annual temperature of 17.2 °C and mean annual
precipitation of 3 mm (Quade et al., 2007; Sun et al., 2023; Zomer et al.,
2022). The alluvial fan, characterized by a triangular shaped form, is
approximately 80 m wide and around 200 m long (Fig. 1; Moradi et al.,
2020; Sun et al., 2023). The entire system and its direct vicinity can be
divided into four primary geomorphological units: bedrock, hillslope
deposits/scree deposits, an older (inactive) alluvial fan generation, and a
younger (active) alluvial fan generation (Sun et al., 2023; Fig. 1c).
Optically stimulated luminescence (OSL) dating of sediments from the
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older and the younger fan generation was performed in a previous study
(Sun et al., 2023) and resulted in ages of 13.6 ka (younger fan section)
and 56.4 ka (older fan section; cf. Table S1; Sun et al., 2023). Notably,
the older and younger fan sections are distinct and separated by a
topographic step of ~0.8 m.

2.2. Irrigation experiment and sampling

The irrigation experiment and sample collection were conducted on
14th March 2019 on the alluvial fan system. Irrigation was performed on
both the older and the younger fan sections, with three replications for
each fan section (I1-6; Fig. 1). At each irrigation point, a 75 x 75 cm plot
was set up (Fig. 2A, B). Irrigation was performed using a simple device
consisting of a full-cone nozzle (Lechler, no. 490.608.30.CA.00.0)
mounted 2 m above ground on an aluminum frame (Fig. 2Q),

Fig. 1. Study area. (a) Digital elevation model (SRTM data, NASA) of the study area at 1480 m.a.s.L.; the upper limit of the fog bank is typically around 1100 m. (b &
c) Position of soil profiles on the fan, showing the two different alluvial fan sections, with red colors dominating the abandoned (old) surface, and gray to brown
colors indicating the younger and active fan section. Irrigation sites and samples I1, 12 and I3 are located in the older fan section and 14, I5, 16 in the younger

fan section.
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Fig. 2. Irrigation experiments. (A) The irrigation plot with an area of 75 x 75 cm?. (B) Pre-irrigation photos of the irrigated surface. (C) Set-up of the irrigation
device. (D) Full cone nozzle (Lechler, no. 490.609.30.CA.00.0) with a typical drop size range of <0.5 mm to 4.49 mm. A configuration with 1 nozzle operated with
0.8 bar was chosen. The flow rate was 44.8 mm h™' during the 30 min-long experiment. (E) The irrigated plot during irrigation. (F) Overview of the setting with the
irrigation device located on the younger alluvial fan surface; note the topographic step (white dashed line) between the younger and older fan sections.

surrounded by a canvas wind shield-although wind disturbance was
generally negligible. The design of the irrigation system was adapted
from other studies (Iserloh et al., 2012; May et al., 2020). It simulated
natural rainfall using drops ranging from 0.5 to 4.49 mm in diameter,
with fall velocities between 3 and 5 m s~! — within the lower range of
natural rainfall velocities (3-9 m s_l; Iserloh et al. 2012; Cerda, 1997)
due to the 2 m drop height (Fig. 2D).

The system was therefore operated with a pressure of 0.8 bar to
simulate an intense rainfall event (>10 Lh™* m~2, Xie et al., 2021). The

kinetic energy per drop (E) was estimated to range from 0.4 x 107® J to
7.4 x 1074 J (Li et al., 2018). The nozzle was connected to a 1000 L
water container filled with demineralized water by a hose system that
was equipped with a manometer, a flow control unit, and a flow meter.
According to a previous study (May et al., 2020), the water distribution
of the spraying nozzle on the plot is homogeneous, which is expressed by
a uniformity coefficient (UC) of 90.6 % (Christiansen, 1942; Iserloh et al.
2012). Each of the six plots was irrigated for 30 min, delivering 45 L of
water over a spray area of 2.011 m? (diameter 160 cm), corresponding
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t012.6 and 44.8 Lh™! m~2 for the 0.563 m? plot area. Historical records
indicated that the maximum rainfall rates in the region occurred at
Antofagasta on June 18, 1991 (24 mm h™1) and at Taltal on March
24-26, 2015 (48 mm h’l) (Bozkurt et al., 2016; Pfeiffer et al., 2021).
The artificial irrigation rate of 44.8 mm h™! used in this study is
therefore comparable to past rainfall events in the Paposo region.

Irrigation samples were collected from the top-left corner of each
plot after the surface had visibly dried and no water residue remained
(Fig. 3c). Correspondingly, control samples (non-irrigated) were
collected approximately 25 cm upslope from wach irrigation point
(Fig. 3c), resulting in a total of twelve sampling sites. At each site, soil
samples were collected from the surface to a depth of 15 cm below the
surface (b.s.), divided into four layers: 0-1 cm, 1-5 cm, 5-10 cm, and
10-15 cm (Fig. 3e, f). The 15 cm maximum depth was selected based on
observed water percolation, which reached the 10-15 cm layer. In the
older fan section, a clay-horizon was found at 5-10 cm. In the younger
fan section, the leaching water penetrated deeper than in the older fan
section, which was limited to a depth of 15 cm (Fig. 3d-f). Loose rocks
and plant debris were removed prior to sampling, and spades and
pickaxes were used to excavate the pits. The I3 site (older fan section),
was dug down to 5 cm b.s. due to the presence of large rocks or hardpans
beyond this depth.

2.3. Separation of soil aggregates by dry sieving

Dry sieving was used in the study to determine soil aggregates at the
soil surface (0-1 cm) and in sub-surface soils (>1 c¢m) (Bach and Hof-
mockel, 2014), after air-drying for all samples both before and after
irrigation. A stack of sieves, with mesh openings of 2 mm, 0.25 mm,
0.053 mm, and 0.02 mm, was shaken horizontally by hand at a rate of 30
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times per minute for 2 min. Dry aggregates were gently removed from
the sieves and then weighed to determine the distribution of soil
aggregates.

The aggregate size distribution was characterized by mean weighted
diameter of aggregates (MWD, mm) (Fomin et al., 2021):

> (mi x Di)
> mi
where i is number of aggregate fractions, m; is the weight of i aggregate

fraction (g), D; is the diameter of i aggregate fraction calculated as the
mean value of the mesh diameters of the upper and lower sieves (mm).

MWD =

2.4. Extraction of water-dispersible colloids (WDCs)

The desert soils were dry in their natural environment before sam-
pling. The irrigation soil samples were stored at room temperature. Due
to the low clay content, no soil clods formed following irrigation,
eliminating the need for mechanical disaggregation. They were subse-
quently sieved to a size smaller than 2 mm, excluding any stones, to
prepare them for WDC analysis. WDC extraction followed a commonly
used procedure, as described by Séquaris and Lewandowski (2003). In
brief, approximately 10 g of soil was mixed with 20 ml of Milli-Q water
(1:2) and shaken on a horizontal shaker at 150 rpm for 6 h. An additional
60 ml of deionized water was then added to the suspension, followed by
a settling period. We calculated a sedimentation time of 10 min to
remove particles larger than 20 pm according to Stokes’ law. The su-
pernatant, containing the non-settling phase, was carefully transferred
into centrifugation tubes using a pipette. To isolate the desired colloids
with a size smaller than 300 nm, centrifugation was carried out for 10
min at a speed of 7500 rpm (Biofuge, Heraeus, Hanau, Germany). The

Fig. 3. Irrigation sampling (a) Pre-irrigation photos of the irrigated surface. (b) Post-irrigation photos of the irrigated surface. (c) Sampling sites 30 min after the
irrigation experiment. The upper site is the control site, and the downward site is the irrigated site. (d—e) Sampling profiles of irrigated sites in the older fan section.
Irrigation water permeated down to 10-15 cm below surface. (f) Sampling profile of an irrigated site in the younger fan section.
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centrifugation time was determined according to the methodology
described by Hathaway (1956). Dynamic light scattering (DLS) (Nano
ZetaSizer, Malvern) measurements were then conducted to control the
size range of the separated WDCs (Zhang et al., 2021).

2.5. Asymmetric flow field-flow fractionation (AF4)

The WDCs with sizes below 300 nm were fractionated using asym-
metric flow field-flow fractionation (AF4) (AF2000, Postnova Analytics,
Landsberg, Germany). To determine the WDC-OC content, the AF4 was
coupled online with organic carbon detection (OCD; DOC-Labor,
Karlsruhe, Germany). Furthermore, the concentrations of colloidal Mg,
Al, Si, P, Ca, and Fe were measured using online inductively coupled
plasma mass spectrometry (ICP-MS; Agilent 7500, Agilent Technologies,
US). The parameters of the AF4 separation method were applied
(Table S1), based on the study conducted by Moradi et al. (2020). The
particle size resolution of the AF4 system was validated using sulfate
latex (Postnova Analytics) analyzed under the same conditions as the
samples, allowing for the conversion of elution time to colloid size
(Moradi et al., 2020). In the Atacama Desert, three peaks of WDC size
fractions can be determined: The first peak in the fractogram corre-
sponded to nanocolloids (NCs) with a size range of 0.6-24 nm, while the
second peak represented fine colloids (FCs) ranging from 24 nm to 210
nm. The medium colloids (MCs), eluting between 210 nm and 300 nm,
constituted the third peak (Sun et al., 2023).

Quantification via ICP-MS and OCD was performed using external
multipoint calibration (8 levels) and linear regression. Peak areas from
the elution profiles were integrated and converted to concentrations
(uM), which were then normalized to pmol WDC ions g ! dry soil based
on sample weight and moisture content. WDC content (OC, Mg, Al, Si,
Ca, and Fe) was expressed as mg WDC ions per kg soil. As these elements
represent the major components of WDCs, their sum was used as a proxy
for total WDC content (Missong et al., 2018a; Moradi et al., 2020). Due
to the low P concentrations, P content in the WDC fractions (WDC-P)
was reported in pg WDC-P kg™ of dry soil.

2.6. Statistical analysis

We assessed splash erosion by analyzing colloids in the 0-1 cm layer
and identified particle leaching in the depth profile ranging from 1-15
cm, which was calculated by adding up the sub-layer values (1-5 cm,
5-10 cm, and 10-15 cm) using the following formula:

_ (C1x4+C2x5+C3x5)

15 @

Cpro
Cpro (mg kg™ !) represents the content of the entire sampling sub-layer,
which ranges from 1 cm to 15 cm for all sites except for the I3 site.
C1, Cy, and Cs refer to the content of elements in the 1-5 cm, 5-10 cm,
and 10-15 cm layers, respectively. For the I3 site, the depth profile
referred to the 1-5 cm layer.

In this study, two fixed factors were considered: the formation age of
the alluvial fan and the irrigation. Although a full-factorial design was
originally planned to assess the effects of these two factors on soil
aggregate fractions, MWD, WDCs content and the proportion of the sub-
fractions, the relative proportions of elements in WDCs and their sub-
fractions, as well as WDC-P distribution, large data variation and the
nested structure of the sampling led us to adopt a more robust statistical
approach. Specifically, linear mixed-effects models were employed to
account for the fixed effects (fan age and irrigation) while incorporating
sampling site as a random effect to address spatial dependency and
improve the reliability of statistical inference. Pearson correlations were
employed to examine: (1) the relationships between WDC, NC, FC, and
MC content and soil aggregates fractions and MWD; and (2) the asso-
ciations between WDC-P and the elements OC, P, Mg, Si, Al, Ca, and Fe
in WDCs of three different size sub-fractions. All statistical analyses were
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performed using SPSS v22.0 (IBM, USA), and visualizations were
created using OriginPro v9.1 (OriginLab, USA).

3. Results
3.1. The soil aggregate size distribution affected by irrigation

The irrigation effect on soil aggregate fractions varied across
different soil depths (Table 1). In the surface layer (0-1 cm), irrigation
significantly decreased macroaggregates (0.25-0.2 mm) along with an
significant increasing microaggregates (0.053-0.25 mm). In the sub-
surface layer (>1 cm), the irrigation response was influenced by fan age.
In the older fan section, macroaggregates decreased and micro-
aggregates increased following irrigation. In contrast, the younger fan
section showed increases in both macro- and microaggregate fractions
post-irrigation (Table 1).

3.2. Size fractions and elemental composition of WDCs in the surface soil
layer (0-1 cm)

FCs were the predominant particle size fraction of WDCs (65 + 25 %)
in the surface layer (0-1 cm) of the older fan section, whereas MCs
accounted for a larger portion in the younger fan section (71 + 10 %)
before irrigation (Figs. 4, 5, 7b). After irrigation, FCs accounted for 35 +
20 % and MCs became the predominant fraction (62 + 20 %) in the
older fan section. However, in the younger fan section, the percentage of
MCs decreased to 52 + 25 % and FCs increased from 21 + 12 % to 44 +
27 % (Fig. 7b).

To estimate the colloid content of the soils, the sum of the

Table 1
Effects of irrigation and sediment age on proportion of soil aggregate fractions
(%) and mean weight diameter (MWD, mm).

Depth Sites >0.25 >0.053 >0.02 <0.02 MWD
mm mm mm mm (mm)
0-1 OL + TO' 85.2 + 13.3 £ 1.2+ 0.3 + 0.98 +
cm 13.7 12.7 1.1 0.2 0.1
OL +T1 95.0 + 42+48 06+ 0.2+ 1.08 £
5.3 0.6 0.2 0.05
YO + TO 85.9 + 123 + 1.6 + 0.2 + 0.99 +
12.0 10.5 1.4 0.2 0.1
YO +T1 75.4 + 23.6 + 1.0+ 0.2+ 0.88 +
11.4 11.6 0.3 0.1 0.1
>1 OL + TO 62.4 + 35.4 + 0.8 + 1.4+ 0.76 +
cm 3.8 4.4 0.5 1.7 0.04
OL + Tl 56.8 + 41.4 + 1.2+ 0.6 + 0.70 +
12.7 12.3 0.6 0.2 0.1
YO + TO 68.1 + 29.5 + 21+ 0.3 + 0.81 +
10.4 9.6 1.0 0.03 0.1
YO +T1 68.7 + 29.7 + 1.1+ 0.6 + 0.82 +
13.5 12.4 0.8 0.5 0.1

Analysis of variance (P values) for parameters as affected by sediment age and

irrigation

0-1 Age NS NS NS NS NS
Irrigation 0.011* 0.008* NS NS NS
Age x NS NS NS NS NS
Irrigation

>1 Age NS NS NS NS NS
Irrigation 0.008* 0.008* NS NS NS
Age x 0.041* 0.036* NS NS NS
Irrigation

*Indicates significant at p < 0.05, **indicates significant at p < 0.001.

 OL = sites on the older fan section, including I1, 12 and I3, YO = sites on the
younger fan section, including 14, I5, and I6. TO: before irrigation; T1: at the end
of 30 min of irrigation.

¥ The value was given as mean + SD, n = 3.
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Fig. 4. Fractogram of water-dispersible colloid (WDC) elements, e.g., magnesium (Mg), aluminum (Al), silicon (Si), calcium (Ca), iron (Fe), and organic carbon (OC)
of the top layer (0-1 cm) at sites (including sites I1, 12, I3) on the older fan section, obtained by flow field-flow fractionation (FFF) coupled with inductively coupled
plasma mass spectrometry (ICP-MS) and organic carbon detection (OCD). TO: before irrigation; T1: at the end of 30 min of irrigation. Nano: Nanocolloid fraction from
0.6 nm to 24 nm; Fine: Fine colloid fraction from 24 nm to 210 nm; Medium: Medium colloid fraction from 210 nm to 300 nm. Note different scaling of Y-axes for the
6 figures. Axis ranges differ among the six panels to enhance visibility of trends. All panels use the same measurement units and indicators for direct comparison.

concentrations of seven colloidal elements (OC, P, Mg, Al, Si, Ca, Fe) was
used as a proxy, where Si, Al, and Fe were the predominant elements in
the WDCs and their sub-fractions across both sections (Table S3). In the
surface layer (0-1 cm) of the older fan section pre-irrigation, the WDC
content amounted to 154 + 117 mg kg~ ', while a relatively lower
concentration of WDCs (37 + 19 mg kg™ 1) was found in the younger fan
section (Fig. 7a). Interestingly, they exhibited the opposite response to
irrigation (Fig. 7a). The WDC content decreased to 58 + 29 mg kg™! in
the older fan section and increased to 87 + 78 mg kg™! in the younger
fan section (Fig. 7a).

3.3. Size fractions and elemental composition of WDCs in the subsurface
soil layer (>1 cm)

In the >1 cm soil layer post-irrigation, changes in the content of
WDCs and sub-fractions were observed (Fig. 7c). The WDC content
increased from 130 + 120 to 261 =+ 106 mg kg ™! in the older fan section
(Fig. 7), while a declining trend was observed in the younger fan section,
decreasing from 111 + 65 mg kg~ to 95 + 27 mg kg™ ! (Fig. 7c).
Without irrigation, FCs dominated the WDCs, constituting 63 + 17 % in
the younger fan section and 64 + 9 % in the older fan section (Fig. 7d).
Interestingly, irrigation increased the proportion of FCs in the older fan
section to 75 + 8 %, while it slightly decreased to 61 + 13 % in the
younger fan section (Fig. 7d). These variations were not significant
(Table S3).

Although both irrigation and fan age showed limited effect on the
relative proportion of the elemental composition of WDCs and their sub-
fractions, Si, Al and Fe were the predominant elements in the WDCs and
their sub-fractions for all sites (Table S4).

3.4. Phosphorus associated with WDCs

In general, the variation of the colloidal-P content and fractions was
comparable to the variations of the WDCs (Figs. 4, 5 and 6). In the
surface layer (0-1 cm), a decrease in the water-dispersible colloidal
phosphorus (WDC-P) content from 394 + 395 pg kg~ to 208 + 48 ng
kg~! was observed after irrigation at sites in the older fan section
(Fig. 8a). Conversely, sites located in the younger fan section exhibited a
notable increase in WDC-P content from 124 + 55 ug kg ! to 324 + 209
g kg~ (Fig. 8a). In the subsurface layer (>1 cm), sites situated in the
younger fan section displayed a slight decrease from 613 + 284 pg kg™
to 542 + 324 pg kg’1 (Fig. 8b), while sites in the older fan section
showed an increase from 260 + 313 pug kg ™! to 542 + 324 ug kg~ WDC-
P (Fig. 8b).

Three sub-fractions (NC-P, FC-P, and MC-P) were observed in the
surface layer (0-1 cm) (Fig. 6). Before irrigation, FC-P was the dominant
fraction in the older fan section (62 + 22 %), and MC-P was the primary
one in the younger fan section (45 + 7 %) (Fig. 6, Fig. 8b). Interestingly,
irrigation significantly increased NC-P from 8 + 5 % to 23 + 6 % in the
younger fan section (Fig. 8). In the subsurface layer (>1 cm), FC-P was
predominant in the WDCs for all sites. Furthermore, the fractions of MC-
P decreased notably from 35 + 10 % to 16 + 5 % in the older fan section
after irrigation.

Correlation analysis revealed that WDC-P showed a significant
dependence on colloidal mineral elements, including Fe, Al, Mg, Si, and
OC. In the sub-fractions, FC-P exhibited a positive relationship with all
mineral elements and OC (Table S5).
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Fig. 5. Fractogram of water-dispersible colloid (WDC) elements, e.g., magnesium (Mg), aluminum (Al), silicon (Si), calcium (Ca), iron (Fe), and organic carbon (OC)
of the top layer (0-1 cm) at sites (including sites 14, I5, 16) on the younger fan section, obtained by flow field-flow fractionation (FFF) coupled with inductively
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scaling of Y-axes for the 6 figures. Axis ranges differ among the six panels to enhance visibility of trends. All panels use the same measurement units and indicators for

direct comparison.
4. Discussion
4.1. Water movement and potential particle transport following irrigation

The infiltration rates in desert soils gradually decline with age
(Greenbaum et al.,, 2020) accompanied by a reduction of surface
roughness and the formation of a flat, smooth, and well-developed
desert pavement (Houston, 2002; Meadows et al., 2008), as shown in
our older fan section (Table S2; Sun et al., 2023). However, infiltration
capacity in both the younger (~14 ka, 244 mm h™) and older (~56 ka,
~181 mm h™1) fan sections remains far above the applied irrigation rate
of 44.8 mm h™! (Pfeiffer et al., 2021; Sun et al., 2023), suggesting that
water would predominantly infiltrate rather than generate surface
runoff. Consistent with this, no surface runoff or visible sediment
transport was observed despite a steel chute was installed to capture
potential runoff (Fig. 2A). Instead, subsurface flow emerged ~10 min
after irrigation (Fig. 3b), with water infiltrating vertically to ~15 cm
depth before moving laterally downslope (Fig. 3b, d and e), consistent
with previous studies (Arens et al., 2021; Owen et al., 2013; Pfeiffer
et al., 2021). While evaporation has a strong impact in the Atacama
Desert (Houston, 2006a), its immediate effect on infiltration-driven
water movement appears limited. Pfeiffer et al. (2021) reported a
persistent downward flux of vapor lasting over half a month after
rainfall and May et al. (2020) observed moisture migration to ~25 cm
depth for three days post-irrigation. In our study, short-term water
redistribution was driven by infiltration and downslope subsurface flow.
These processes directly influence the mobility and fate of soil particles,
especially fine particles such as WDCs that are more easily mobilized
under specific hydrological conditions (Martinez-Mena et al., 2002). In
turn, the presence and movement of fine particles can affect soil porosity
and hydraulic conductivity, modifying water flow patterns over time
(Moradi et al., 2020).

4.2. Effects of irrigation and sediment age on the elemental composition of
WDCs

The content of WDCs (<300 nm) and fine soil particles (<0.25 mm)
showed greater spatial variation across sites—despite having similar
sediment age and undergoing the same irrigation treatment—than that
of coarser particles (>0.25 mm), with standard deviations in some sites
comparable to the mean values (Table 1, Table S3). This high hetero-
geneity suggests that fine soil fractions are more sensitive to local
environmental disturbances such as micro-relief, plant distribution, and
aerosol deposition (Moradi et al., 2020; Sun et al., 2023). Although our
results did not show a clear trend of increased heterogeneity with
increasing sediment age, previous studies have suggested that long-term
pedogenesis can intensify spatial variability (Huang et al., 2016),
particularly in arid environments where soil development is strongly
time-dependent (Delgado-Baquerizo et al., 2020). Nevertheless, our re-
sults, supported by statistical analysis, revealed that sediment age
significantly influenced the composition of WDCs in alluvial fan sites
(Table S4, Table S5), especially in the nano-colloids (NCs). In line with
the findings of Sun et al. (2023), the older fan surface (0-1 cm) exhibited
a lower proportion of NCs (Table S3) and a distinct elemental profile,
characterized by less Ca and more Al and Fe in both WDCs and NCs
(Figs. 3, 4, Table S4). These trends are consistent with age-driven pat-
terns of decalcification and initial rubification during early pedogenesis
in the desert environment (Ebeling et al., 2016; Walk et al., 2023).

Although irrigation showed limited effect independently on the
elemental composition (Al, Si, Ca) of surface NCs, its significant inter-
action with sediment age (p < 0.05; Table S4) suggests that short-term
disturbance-such as irrigation or extreme rainfall events-can mitigate
age-driven differences in the proportions of NC-Al, NC-Si, and NC-Ca.
These effects are likely associated with enhanced chemical dissolution
or increased NCs mobility induced by leaching. Notably, a significant
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interaction between irrigation and sediment age was also observed for
the Si/Al ratio in surface WDCs (Table S4). The Si/Al ratio, which was
over 2, may be related to multiple sources of WDCs, including mineral
assemblages and sand-derived particles (Moradi et al., 2020; Sun et al.,
2023). Anorthite, with a Si/Al ratio of 1:1, and albite, with a Si/Al ratio
of 3, are the dominant components of atmospheric dust deposition near
the study site (Wang et al., 2014). Additionally, sand-derived particles,
which contribute more silicon, also enhance the Si/Al ratio in WDCs
(Moradi et al., 2020). Consistent with Sun et al. (2023), age tended to
reduce the Si/Al ratio (Table S4), which may reflect selective loss of Si-
enriched components or increased Al input through weathering (He
et al., 2008).

4.3. Potential mechanisms driving WDCs dynamics following irrigation

Although irrigation did not cause statistically significant changes in
WDC content, observable trends suggest a dynamic response (Table S3,
Fig. 7). This lack of significance is likely due to the interplay of multiple
mechanisms: (1) the loss of WDCs via water movement as discussed in
section 4.1 or soil aggregation and (2) the release of WDCs by aggregate
disintegration. This is supported by the negative correlation between
MWD and WDC content (Table S6), indicating that lower MWD—re-
flecting weaker structural stability—was associated with greater WDC
release. A higher MWD, in contrast, typically reflects stronger resistance
to external forces and limits colloid mobilization (Hu et al., 2023). These
opposing processes may offset each other, resulting in no net detectable
change in fine particles, especially WDCs, at the statistical level. In
contrast to WDCs, larger soil aggregates (>0.053 mm) have been shown
to respond more readily to short-term hydrological events (Table 1; Dal
Ferro et al., 2023; Shi et al., 2017), highlighting the relatively stable or
buffered nature of colloidal particles. Consequently, WDCs have often
been overlooked in past analyses. We therefore conducted further

analysis of these trends to identify the dominant processes influencing
WDC dynamics during irrigation, which appear to be governed by soil
texture and age-related differences in aggregation.

4.3.1. Irrigation effect on WDCs in the soil of younger fan section

In the surface layer (0-1 cm) of the younger fan section, the content
of WDCs increased due to irrigation (Figs. 5 and 7) and there was a
decrease in macroaggregates (0.25-2 mm) and a rise in microaggregates
(0.053-0.25 mm) (Table 1). Simultaneously, the proportion of FCs
increased while that of MCs decreased (Figs. 5 and 7). This means that
the disintegration of soil particles drove the release of fine particles. The
process was likely driven by the impact of raindrops and runoff transport
(Fernandez-Raga et al., 2017; Li et al., 2018; Lv et al., 2023; Meshesha
et al., 2016). Both raindrop kinetic energy and soil internal forces affect
splash erosion (Ghahramani et al., 2012; Liu et al., 2021). The break-
down of soil aggregates by splash erosion was facilitated by the weak
cohesive forces due to the low clay content (1 %, Fig. S2). Despite the
rainfall simulator provided less kinetic energy than natural rainfall
(Iserloh et al., 2013), raindrop energy (~3.7 x 1074 J) was sufficient to
disperse soil aggregates (Li et al., 2018; Zambon et al., 2021), especially
in the top centimeter of soil (Lv et al., 2023).

In the subsurface (>1 cm), the initial WDC content was larger than
that in the surface layer (Fig. 5, Fig. 7), consistent with leaching accu-
mulation (Moradi et al., 2020). After irrigation, WDC content decreased
by nearly 14 % alongside increased macro- and microaggregates
(Table 1), rising MCs and a decrease in FCs (Fig. 7), suggesting that
aggregation processes may have been induced. Soil aggregation may
occur during the drainage and drying period (Mohanty et al., 2015;
Wang et al., 2020a). Studies have shown that if the duration of drying
exceeds a threshold, salts or minerals in the evaporating pore water can
precipitate and bind the fine particles like colloids rather than release
them (Mohanty et al., 2015; van den Bogaert et al., 2016). A closer
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approach distance for the colloids following a decrease in the soil water
content may initiate cementation processes (Majdalani et al., 2008).
Sampling conducted after 30 min of irrigation may have captured early
aggregation effects. Additionally, WDCs loss may stem from downslope
subsurface flow (Fig. 2), a process prominent under conditions of high
infiltration rate and soil permeability (El-farhan et al., 2000; Zhang
et al., 2016). Similar downward colloid accumulation was observed in
this fan system by Moradi et al. (2020) and Sun et al. (2023).

4.3.2. Irrigation effect on WDCs in the soil of the older fan section

By contrast to the younger fan section, opposite WDC dynamics were
observed in the older fan section following irrigation (Fig. 7). In the
topsoil (0-1 cm), there was a decrease in WDCs with NCs and FCs
decreasing by 57 % and 80 %, respectively, and MCs slightly declining
(Fig. 7).This implies that colloid transport dominated over disintegra-
tion. It appears that the kinetic energy of raindrops or irrigation water
droplets did not exceed soil strength (Auerswald, 1995; Blanco-Moure
et al., 2012; Shi et al., 2012; Xiao et al., 2017). In general, the clay
content helps to increase the mineral surface area of aggregates and
enhances the cohesive strength of the soil (Almajmaie et al., 2017; Hu
et al., 2018; Ma et al., 2022; Schweizer et al., 2019; Totsche et al., 2018;
Zambon et al., 2021). Therefore, the increased clay content (7 %,
Table S2) in the older surface layer (0-10 cm) reduced the mechanical
breakdown and thus soil erodibility by raindrops (Ayoubi et al., 2022;
Lebissonnais, 2016) or irrigation water droplets. The hard surface
described by Moradi et al. (2020) as a ’crust’ may have further mini-
mized splash erosion.
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In the deeper layer (>1 cm), WDCs showed a one-fold increase post-
irrigation (Fig. 7). This can likely be attributed to colloid leaching from
the surface layer. The presence of a solid mineral layer (Sun et al., 2023)
may inhibit deeper transport, facilitating colloid accumulation in the
5-10 cm depth. Furthermore, the increased WDCs content was associ-
ated with aggregate disintegration within the layer. The reduction in
macroaggregates (0.25-2 mm) along with the increase in micro-
aggregates (0.053-0.25 mm) and the increase in the proportion of FCs
along with the decrease of MCs further indicate a disintegration process
(Table 1). In the deeper layer (>1 cm), the disintegration of soil ag-
gregates is mainly induced by swelling and clay dispersion, with rain-
drop impact playing an insignificant role (Tanner et al., 2021;
Torkzaban et al., 2015; Vaezi et al., 2017). The increased clay content (7
%) compared with that of the younger fan section can lead to increased
swelling when wet, potentially causing further aggregate breakdown
(Hu et al., 2015; Lebissonnais, 2016). These findings are consistent with
previous reports of subsurface WDC enrichment in the older fan section
(Sun et al., 2023).

4.4. Irrigation effect on WDC-P in soil layers

The response of overall WDC-P to irrigation displayed a consistent
and simultaneous trend with WDCs (Figs. 6, 7 and 8). Specifically, WDC-
P exhibited a decrease in the surface layer (0-1 cm), while showing an
increase in the subsurface layer (>1 cm) in the older fan section.
Conversely, in the younger fan section, the opposite trend was observed
(Fig. 8). A positive correlation between WDC-P and colloidal elements
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(Si, Al, Fe, Mg, and OC; Table S7) supports that WDC-P is influenced by
the elemental composition of WDCs (Jiang et al., 2023; Sun et al., 2023;
Zhang et al., 2023), which in turn shifted with irrigation (Table S4,
Table S5). As phyllosilicate clay minerals and Fe/Al-(hydr)oxides are
colloidal sources and P sorbents (Kahle et al., 2004; Wang et al., 2021b;
Zhang et al., 2021) in the study area, their dynamics affected the
redistribution of WDC-P.

However, in some cases following irrigation, variations of P associ-
ated with colloidal sub-fractions (NCs, FCs, and MCs) were observed to
be not in accordance with those of the sub-fractions (Figs. 7 and 8). NCs
accounted for 3-18 % of WDCs, and there was a decrease of NCs in the
younger surface layer with increasing WDCs after irrigation (Fig. 7).
This may be related to the fact that nanoparticles were susceptible to
being transported with irrigation water droplets. However, the propor-
tion of NC-P accounted for 8-23 % of WDC-P and irrigation led to a
remarkable three-fold rise in NC-P in the younger surface soil (Fig. 8).
Correlation analysis revealed that NC-P correlated with major mineral
elements (Si, Al, Mg, Fe) in NCs, but showed no relationship with NC-Ca
(Table S7). Moradi et al. (2020) reported that Ca readily retained P by
forming insoluble Ca-P salts, and Ca?* may function as a cation bridge to
form complexes such as OC-Ca-P. However, the relatively low concen-
tration of NC-OC restricted the role of Ca in the formation of NC-P
(Fig. 6). In the younger surface layer, instead of NC-Ca, the presence
of NC-Si and NC-Al as likely clay minerals and Al (hydr)oxides may
increase the content of NC-P in this size fraction (Table S4). Therefore,
changes in WDC-P in response to irrigation are controlled not only by the
quantity of NCs but also by their elemental composition.

FC-P comprised the majority of WDCs (34-65 %) and varied in
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accordance with FCs (Figs. 7 and 8). Consistent with the previous study
(Sun et al., 2023), FC-P correlated with both OC and mineral elements,
even Ca (Table S6). Ca was able to form complexes of OC-Ca-P in the
fractions of both FCs and MCs (Wang et al., 2020b; Zhang et al., 2023).
However, in our study, MC-P, which changed along with WDCs, showed
no correlation with MC-OC. It has also been observed in previous studies
that OC plays a minor role in associating P in MCs in the hyper-arid soils
(Moradi et al., 2020; Sun et al., 2023).

5. Conclusion

The Atacama Desert is one of the harshest environments for life on
Earth. In this study, we investigated how intense rainfall events affect
the behavior of water-dispersible colloids (WDCs) and their associated
phosphorus (WDC-P) distribution in this hyper-arid region. Although
irrigation did not cause statistically significant changes in the overall
content or sub-fractions of WDCs, our results indicate that WDCs exist in
a dynamic balance between aggregation/disintegration and transport
processes. These dominant processes varied with soil depth and sedi-
ment age, likely driven by differences in clay content and soil structure
shaped by pedogenic development. Notably, even a short-term irrigation
event induced detectable changes in the elemental composition of
WDCs. This, in turn, altered WDC-P behavior, particularly within the
nano-colloid sub-fraction (0.6-24 nm), where the associated elemental
constituents changed. Our findings highlight that, although rainfall
events are rare in hyper-arid environments, their influence on nutrient
cycling and landform evolution is not negligible. While our study
captured the effects of a single rainfall event, the cumulative impact of
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such hydrological disturbances over millennia could be profound,
especially regarding colloid-mediated processes. However, the absence
of water sample collection in this study limited our ability to quantita-
tively assess colloid transport and loss. Future studies should incorpo-
rate water-phase analysis and longer-term monitoring to validate the
persistence and broader implications of the observed trends.
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