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Abstract

Genetic studies have increasingly identified key mechanisms that underlie individual and phylogenetic variation in behav-
ioral and brain phenotypes. Here, we used quantitative genetics to estimate heritability in whole brain and region-specific
variation in gray matter in a sample of captive chimpanzees. We included the contributions of sex and age to individual
variation in gray matter as well as their association with cognition and motor functions and found small to moderate heri-
tability in average gray matter volume in the majority of brain regions. By contrast, weaker estimates of heritability were
found when considering asymmetries in gray matter across brain regions. Age was inversely associated with gray matter
volume for the frontal lobe and the basal forebrain after accounting for sex and relatedness of the chimpanzees. Chim-
panzees that had higher cognition scores were found to have greater leftward asymmetries in the regions comprising the
frontal lobe and basal forebrain component. Further, chimpanzees with better performance on a tool use task had higher
gray matter volumes in the frontal and basal forebrain regions. However, no genetic associations were found between tool

use performance or cognition and the average frontal or basal forebrain gray matter volumes or asymmetry.
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Introduction

Comparative studies of primate brain organization have
received considerable scientific attention as a means of
identifying mechanisms underlying the evolution of human
specific neuroanatomical and cognitive specializations
(Sherwood et al. 2012; Rilling 2006). In humans, there is
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a growing body of evidence from quantitative and behav-
ioral genetic analyses demonstrating the role of genetic and
environmental factors on individual differences in various
features of cortical organization, including gray and white
matter volume and integrity, cortical thickness, and gyrifi-
cation (Jansen et al. 2015; Eyler et al. 2012; Strike et al.
2015; Grasby et al. 2020). More recently, quantitative and
behavioral genetic studies have also examined phyloge-
netic variation among nonhuman primates in behavioral
and brain phenotypes. For example, total brain size, corti-
cal surface areas and overall gyrification have been found
to be significantly heritable in vervet monkeys, baboons,
rhesus macaques, chimpanzees and humans (Kochunov et
al. 2010; Rogers et al. 2007, 2010; Fears et al. 2009, 2011,
Cheverud et al. 1990; Hopkins et al. 2015a, 2019a; Atkinson
et al. 2015; Pizzagalli et al. 2016; DeCasien et al. 2020).
Additional studies have shown that the surface area, lengths
or shapes of selected sulci are heritable in baboons, rhesus
monkeys, chimpanzees and humans (Kochunov et al. 2010;
Atkinson et al. 2015; DeCasien et al. 2020; Hopkins et al.
2017, 2021b, 2023a; Foubet et al. 2024). Interestingly, the
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current collective findings generally suggest that heritability
is lowest in humans compared to apes and Old World mon-
keys. For instance, Gomez-Robles et al. (2015) reported that
relative contributions of genetic factors to within species
variation in the spatial location of sulci and lobular land-
marks were higher in chimpanzees compared to humans,
suggesting increased plasticity in human brain develop-
ment. This interpretation is consistent with evidence that the
human brain, at birth, is much smaller as a proportion of its
total adult size (~28%), compared to chimpanzees (~50%)
and more distantly related Old World monkeys (~65%)
(Leigh 2004). The general interpretation of these combined
comparative findings is that reduced genetic contributions
to cortical organization, coupled with increasingly longer
periods of juvenile and adolescent development, provides
a context for greater plasticity and allows the brain to be
malleable in response to different cultural, social and envi-
ronmental factors.

Recently, Vickery et al. (2020) published a macro-
anatomical atlas of the chimpanzee brain that included
measures of gray matter volume and asymmetry from 65
brain regions in a sample of >200 individuals (referred to
as DAVI130). Vickery et al. (2020) reported wide-spread
region-specific age differences in gray matter volume as
well as evidence of population-level asymmetry in multiple
brains regions within the chimpanzee sample. In this paper,
we leveraged the available pedigree information on the
chimpanzee cohort included within the Vickery et al. (2020)
paper to assess heritability in (1) whole brain and region-
specific gray matter volume and (2) region-specific gray
matter asymmetry. Based on previous studies on heritabil-
ity on brain phenotypes in nonhuman primates, we hypoth-
esized that chimpanzees would show significant heritability
in whole brain and region-specific gray matter volume and
hemispheric asymmetry.

In addition to the heritability findings, the contributions
of sex and age to individual variation in gray matter vol-
ume was of interest in this study. As noted above, Vickery
et al. (2020) reported widespread region-specific decline in
gray matter volume associated with increasing age in the
chimpanzees. Age-related decline in total intracranial, gray
matter and white matter volume, as measured from mag-
netic resonance image scans, has also been reported in a
multiple captive populations of nonhuman primates (Didier
et al. 2016; Autrey et al. 2014; Frye et al. 2022; Phillips and
Sherwood 2012; Westerhausen and Meguerditchian 2021;
Westerhausen et al. 2020; Herndon et al. 1999; Koo et al.
2012; Makris et al. 2007; Wisco et al. 2008; Alexander et
al. 2008; Sherwood et al. 2011; Lacreuse et al. 2020). That
said, most studies on aging in nonhuman primates include
young and old individuals that are part of captive breed-
ing programs; however, seldom if ever are data on the
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relatedness of the subjects selected for use in the study pro-
vided in the reports. Ideally one would want to determine
the relative contribution of relatedness between subjects to
individual variation in morphology, independent of other
factors including age and sex. This is especially the case
for studies using cross-sectional designs. Thus, to assess the
contribution of non-genetic factors to individual variation
in each morphology outcome measure, we included age and
sex and their cross-product as covariates in the heritability
analysis. Of specific interest was whether the variable age
or the interaction term between age and sex accounted for
a significant proportion of variance in the brain phenotypes
after accounting for their heritability.

Finally, cognition and motor skill performance data were
available in many of the chimpanzees that were subjects in
the Vickery et al. (2020) paper. Specifically, 191 chimpan-
zees within the Vickery et al. sample have been tested on the
Primate Cognition Test Battery, a set of tasks developed to
assess physical and social cognition in human children and
nonhuman primates (Herrmann et al. 2007, 2010; Schmitt
et al. 2011; Fichtel et al. 2020). Motor skill as measured
by a tool use task were also available in 201 of these same
chimpanzees (Hopkins et al. 2009). Previous studies have
reported that chimpanzees show age-related decline in per-
formance on the PCTB tasks (Hopkins et al. 2021a) and that
age-mediates associations between cognitive performance,
gray matter covariation as well as cortical thickness (Mul-
holland et al. 2021; Hopkins et al. 2023b). Similarly, previ-
ous studies have reported that older chimpanzees perform
more slowly on tool use tasks compared to middle-aged and
young apes (Hopkins et al. 2009) and that variation in per-
formance is associated with gray matter covariation in pre-
motor and superior parietal cortex (Hopkins et al. 2019a).
Because the Vickery et al. (2020) data represent a more
granular, region-specific assessment of gray matter volu-
metric variation, here we examined whether individual dif-
ferences in cognition and tool use skill were phenotypically
or genetically related to region-specific measures of gray
matter volume or asymmetry after adjustment for sex and
age. We hypothesized that significant associations would be
found between chimpanzee cognition, tool use skill and gray
matter volume or asymmetry in one or more brain regions.

Methods and materials

Subjects and archived gray matter volume data

As described in Vickery et al. (2020), magnetic resonance
images (MRI) were obtained from 222 captive chimpan-

zees housed at the Yerkes National Primate Research Center
(YNPRC, n=87) and National Center for Chimpanzee Care
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(NCCC, n=135) of the University of Texas MD Anderson
Cancer Center. There were 135 females and 87 males ranging
from 6 to 54 years of age (Mean=26.64 years, SD=10.4).
All the NCCC chimpanzees as well as 11 YNPRC chim-
panzees were scanned on a 1.5T scanner. The remaining
76 chimpanzees were all housed at the YNPRC and were
scanned on a 3 T scanner. Details on the scanner type, scan
sequences and post-image processing can be found in Vick-
ery et al. (2020). For each chimpanzee, the 130 region (65
regions X 2 hemispheres) DAVI atlas maps were applied
to the processed gray matter modulated volumes and the
average gray matter volume per voxel was computed for the
left and right hemispheres within each region (see Fig. 1 for
atlas map description and legend).

Cognition assessment
Briefly, the PCTB data used in this study have been pre-

viously described in Hopkins et al. (2014b); Russell et al.
(2011). In these studies, 191 chimpanzees were tested on 12

tasks that measure different aspects of physical and social
cognition. Within the sample, individual performance data
on each task were converted to standardized z-scores. The
z-scores were then averaged across all 12 tasks to create a
unit weighted average (UWA) score (Woodley et al. 2015).
Chimpanzees were subsequently classified as performing
higher (HTA, UWA scores>0) or lower than average (LTA,
UWA<0) (we note here that there were no chimpanzees
with a UWA score=0). Using this classification criteria,
there were 89 HTA and 102 LTA chimpanzees in the sample.
The PCTB tests were most frequently administered within 1
to 3 years of the acquisition of the MRI scans (Mean differ-
ence in age=2.33 years, SD=1.90).

Tool use performance

Tool use performance data was available in 201 chimpan-
zees and was tested using a task designed to simulate ter-
mite fishing or ant dipping in wild chimpanzees (Bogart et
al. 2012; Hopkins et al. 2009, 2015b; Boesch and Boesch

Chimpanzee Atlas & Gray Matter
Volumetric Analysis

Davi130 Parcellation

2 Anterior Superior Frontal G. aSFG
4 Middle Superior Frontal G mSFG
6 Posterior Superior Frontal G. pSFG
8 Anterior Middle Frontal G. aMFG
10 Posterior Middle Frontal G pMFG
12 Anterior Inferior Frontal G. alFG
14 Middle Inferior Frontal G. miFG
16 Posterior Inferior Frontal G pIFG
18 Medial Orbitofrontal Cortex mOFC
20 Lateral Orbitofrontal Cortex IOFC
22 Anterior Cingulate Cortex ACC
24 Middle Cingulate Cortex MCC
26 Posterior Cingulate Cortex PCC
28 Superior Precentral G sPrCG
30 Middle Precentral G. mPrCG
32 Inferior Precentral G iPrCG
34 Paracentral Lobule PCL
36 Frontal Operculum FOP
38 Parietal Operculum POP
40 Anterior Insula alns
42 Posterior Insula pins
44 Anterior Transverse Temporal G allG
46 Posterior Transverse Temporal G. pTTG
48 Anterior Superior Temporal G. aSTG
50 Posterior Superior Temporal G pSTG
52 Anterior Middle Temporal G. aMTG
54 Posterior Middle Temporal G. pMTG
56 Anterior Inferior Temporal G alTG
58 Posterior Inferior Temporal G. pITG
60 Entorhinal Cortex EnC
62 Anterior Fusiform G. aFFG
64 Posterior Fusiform G. pFFG

66 Parahippocampal G. PHC
68 Amygdala Amy
70 Hippocampus HC
72 Superior Postcentral G sPoCG
74 Middle Postcentral G. mPoCG
76 Inferior Postcentral G iPoCG

78 Superior Parietal Lobule SPL

80 Supramarginal G. SMG
82 Angular G AnG
84 Precuneus PCun
86 Cuneus Cun
88 Lingual G. LG
90 Calcarine Sulcus Calc
92 Superior Occipital G sOG
94 Middle Occipital G mOG
96 Inferior Occipital G i0G
98 Caudate Nuclues CN
100 Nucleus Accumbens NA
102 Basal Forebrain Nuclei BF
104 Putamen Pu
106 Globus pallidus GP
108 Thalamus Th
110 Hypothalamus HTh
112 Cerebellum IX - Tonsil CerlX
114 Cerebellum VIIAB CerVill
116 Cerebellum VIIA - Crus | Crusl
118 Cerebellum VIIA - Crus Il Crusll
120 Cerebellum VI CerVI
122 Cerebellum V- Lobe B CerVB
124 Cerebellum V- Lobe A CerVA
126 Cerebellum IV CerlV
128 Cerebellum il Cerll
130 Cerebellum II Cerll

Fig. 1 3D -rendering of the Juna template and the DAVI 130 parcellation of the atlas labels map projected on the surface
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1990; Boesch et al. 2017; Whiten et al. 1999; Marchant and
McGrew 2007; Sanz et al. 2016). Briefly, a PVC pipe was
attached to the subject’s home cage that was blocked at one
end and had a small opening on the opposite end. Food with
an adhesive quality was placed inside the PVC pipe and
in order to obtain the food, the chimpanzee had to insert a
small lollipop stick into the hole, then extract the stick and
consume the food that adhered to the stick. Hand use and
the latency to successfully insert the stick was recorded on
50 responses for each chimpanzee (measured from the time
the subject initiated an attempt to insert the tool with one
hand and ended when the chimpanzee successfully inserted
and removed the tool; Hopkins et al. 2015b, 2019c). The
average latency of the 50 responses served as one outcome
measure of interest. Because the two chimpanzee cohorts
had different experiences with this tool use device, within
the NCCC and YNPRC cohorts, the average latency scores
were converted to standardized z-scores. Based on the
z-scores, chimpanzees were classified as performing bet-
ter (BTA, z-score<0) or worse (WTA, z-score=>0) than
average (note that there were no chimpanzees with an exact
z-score value=0). The majority of the tool use performance
data were obtained within 2 to 4 years of the acquisition
of the MRI scans (Mean difference in age=3.69 years,
SD=2.87). We also recorded the frequency hand use across
the 50 trials. Using binomial z-scores, chimpanzees were
classified as strongly-left handed (z-score <=—1.96, n="70),
weakly-left-handed (z-score between >—1.96 and 0, n=32),
weakly right-handed (z-score between 0 and +1.95, n=31)
and strongly right-handed (z-score >= +1.96, n=68).

Data and heritability analyses

Whole brain gray matter was computed for each chimpan-
zee. Additionally, for each 65 DAVI regions, we computed
the average gray matter volume per voxel for each subject.
Lastly, asymmetry quotients (AQ) were computed follow-
ing the formula [(AQ = (R - L)/((R+L) *0.5)] where R and
L represent the right and left hemisphere gray matter values
for each brain region. Positive AQ values indicated right-
ward biases and negative values indicated leftward asym-
metries. Because magnetic resonance scans were acquired
on different scanner platforms and protocols, as has been
done in studies in human subjects (Orlhac et al. 2022; Tassi
et al. 2024), we used the program Combat Harmonization
to adjust the whole brain and 64 region specific gray matter
volume values for variation due to scanner magnet strength
(see Supplemental Fig. 1).

Consistent with previous work, to estimate heritabil-
ity, we used the software package SOLAR (Almasy and
Blangero 1998). SOLAR uses a variance components
approach to estimate the polygenic component of variance
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when considering the entire pedigree (see Fears et al. 2009,
2011; Rogers et al. 2007; Hopkins et al., 2014a, b, 2018).
Total additive genetic variance (h?) is the amount over-
all phenotypic variance that is attributable to all genetic
sources. Total phenotypic variance attributable to genetic
and non-genetic variables is constrained to a value of 1;
therefore, all non-genetic contributions to the phenotype are
equal to 1 - h?.

We initially used SOLAR to determine heritability in
estimates of whole brain gray matter. Following on from
the initial analysis, rather than consider all brain regions,
we reduced the 65 DAVI regions to 8 dimensions or com-
ponents of brain organization including frontal, parietal,
temporal, visual, cingulate insula, motor-sensory, basal
forebrain, and cerebellar by averaging the gray matter val-
ues within each component. We adopted this approach to
(1) to reduce the number of statistical tests and thereby limit
Type I error and (2) simplify the comparison of the find-
ings to results from other species. The specific brain regions
from the DAVI atlas that were included in the computation
of the values within each dimension is shown in Fig. 2. The
mean gray matter and AQ values for the 8§ components were
the outcome measures in the SOLAR heritability analyses.
Sex, age, and the sex by age interaction term were covari-
ates. Because the AQ data did not meet the assumptions for
normality, non-parametric tests were used to test for asso-
ciations with cognition, tool use skill and handedness. For
all analyses, alpha was set to p<.05.

For the analyses assessing the associations between cog-
nition and average gray matter values, mixed model analy-
sis of co-variance (ANCOVA) was used with region as the
repeated measure (8 levels) while sex and cognition group
were the between group factors The difference in age of the
chimpanzees between PCTB testing and MRI scan acquisi-
tion as well as the chimpanzee relatedness coefficients were
the covariates. Similarly, an ANCOVA was used to examine
the effect of tool use skill and sex on average gray matter
values. Region was the repeated measure (8 levels) while
sex and tool use group were the between group factors. The
difference in age of the chimpanzees between tool use test-
ing and MRI scan acquisition as well as their relatedness
coefficients were the covariates. Because the AQ values
were not normally distributed, we used non-parametric tests
(Mann-Whitney U, Kruskall-Wallis) to test for their asso-
ciation with cognition, tool use skill and hand preference.
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Fig. 2 Depiction of the regions within the DAVI 130 parcellation collapsed into the macrostructural organizational components used in this study

Table 1 Results of stepwise regression analyses and best fit line in chimpanzees linear quadratic

Linear F-value r2 P Quadratic F-Value 2 p
Mean Gray Matter
Frontal 27.593 0.135 0 0.111 0.136 0.74
Temporal 32.793 0.147 0 1.469 0.153 0.227
Parietal 16.537 0.074 0 0.578 0.076 0.448
Visual 24.051 0.106 0 3.467 0.12 0.064
Cingulate-Insula 19.642 0.092 0 0.939 0.086 0.334
Motor-Sensory 11.592 0.07 0.001 0.001 0.07 0.97
Basal Forebrain 23.973 0.106 0 1.503 0.112 0.222
Cerebellum 27.471 0.118 0 5.601 0.14 0.019
Asymmetry
Frontal 0.175 0.015 0.676 0.832 0.019 0.363
Temporal 0.005 0.016 0.944 0.868 0.02 0.352
Parietal 2.793 0.02 0.096 2.353 0.03 0.127
Visual 0.489 0.008 0.485 3.861 0.025 0.051
Cingulate-Insula 1.737 0.019 0.189 0.047 0.019 0.828
Motor-Sensory 17.008 0.124 0.001 2.455 0.134 0.119
Basal Forebrain 1.473 0.022 0.226 2.13 0.032 0.146
Cerebellum 0.365 0.003 0.546 1.608 0.01 0.206
Table 1. For 7 of the 8 components, age showed signifi-
Results cant linear associations with gray matter volume. For the
cerebellum (and borderline for the visual component), the
Age effects quadratic association between age and gray matter volume

Prior to the heritability analyses, we determined whether
age showed a significant linear or quadratic associations
with the whole brain and region-specific gray matter vol-
ume data. This was done as a means of determining which
model of age association (i.e., linear or quadratic) to include
as a covariate in the SOLAR heritability analyses. For these
tests, we used stepwise multiple regression analysis. Sex,
linear age and quadratic age were entered in that order and
the F-value associated with the change in R with the inclu-
sion of the linear and quadratic age variable was used to
determine the best fit line. These findings are shown in

was the best fit. For the AQ measures, age showed a signifi-
cant linear association with the motor-sensory component.
No significant linear or quadratic associations were found
between age and the remaining 7 components.

Heritability in whole brain and region-specific gray
matter volumes

For the whole brain analyses, significant heritability was
found for gray matter volume (h®=0.340, s.e. = 0.164,
p=.012). Sex and the interaction between sex and linear age
were found to be significant covariates (variance accounted
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for =0.189) (see Fig. 3). As can be seen, the slope in change
between age and whole brain gray matter was stronger in
the males compared to females. Significant heritability was
also evident for 7 of the 8 components (the lone exception
was the cingulate insula component) (See Fig. 4; Table 2).
Linear age was a significant covariate for the frontal and
basal forebrain regions with increasing age associated with
lower gray matter volumes (see Fig. 5a and b). The inter-
action between sex and age was a significant covariate for
the temporal (linear) and visual (quadratic) components. For
both components, males showed a higher change in slope
value compared to females (see Fig. 5S¢ and d). For com-
pleteness, the heritability estimates for all 65 regions within
the DAVI atlas can be found in Supplemental Table 1. We
note there that of the 65 regions within the DAVI atlas, 49
were significantly heritable at p<.05. In light of these find-
ings, the significant heritability in 7 of 8 of the combined
brain regions is not surprising.

- - N N
(4] ~J o N
o (4] o (4]
| | | |

125-

We next considered heritability in the AQ values for the
8 components. No significant heritability was found for
any of the components (see Table 2). Sex was a significant
covariate for the visual and motor sensory regions with
females having greater rightward biases than males. As with
the region-specific gray matter volume data, for complete-
ness, the heritability estimates and proportion of variance
accounted for by the covariates for the AQ values in all 65
DAVI atlas can be found in Supplemental Table 2. Of the 64
regions, only four showed significant heritability at p <.05.

Cognitive correlates of gray matter volume and
asymmetry

For the average GM values, we performed a mixed model
analysis of variance with region as the repeated measure

(8 levels) while sex and cognition group (HTA, LTA) were
the between group factors. The difference in age of the

-~ Females
= Males

100 | | I I

Whole Brain Gray Matter Volume (cc)

0 5 10 15 20 25 30 35 40 45 50 S5 60
Age (in years)

Fig. 3 (A) Scatterplot of the association between age and whole brain gray matter volume for males (blue) and females (red)
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Fig.4 Left panel) Heritability estimates (+/- s.e.) for average gray matter volume and asymmetry for each component. Right panel) 3D rendering

with color coded indicators of heritability in gray matter volume

Table 2 Heritability estimates of each component for the average Gray
matter volume and asymmetry measures

h2 se p Covariates ~ Variance
Mean Gray Matter
Frontal 0.572 0.154 0.000005 Age 0.117
Temporal 0.43 0.143 0.0004 Sex * Age  0.166
Parietal 0.245 0.141 0.0236 None
Visual 0.251 0.142 0.023 Sex * Age  0.162
Cingulate-Insula  0.139 0.135 0.131 None
Motor-Sensory 0.341 0.137 0.0017 None
Basal Forebrain ~ 0.297 0.141 0.0082 Age 0.106
Cerebellum 0.281 0.126 0.006 None
Asymmetry
Frontal 0.023 0.125 0.426 None
Temporal 0 — 0.5 None
Parietal 0.175 0.152 0.106 None
Visual 0 - 0.5 Sex, Sex *  0.012

Age

Cingulate-Insula  0.004 0.116 0.486 None
Motor-Sensory 0.003 0.171 0.492 Sex 0.063
Basal Forebrain ~ 0.126 0.14 0.164 None
Cerebellum 0 — 0.5 None

chimpanzees between PCTB testing and MRI scan acquisi-
tion as well as the chimpanzee relatedness coefficients were
the covariates. No significant main effects or interactions
were found. For the AQ analysis, Mann-Whitney U-tests
revealed significant differences between the LTA and HTA
chimpanzees for the frontal (U=3596, p=.003) and basal
forebrain components (U=3761, p=.041). For both regions,
LTA apes had greater rightward asymmetries than HTA indi-
viduals (see Fig. 6a).

Motor correlates of gray matter volume and
asymmetry

For the average GM values, we performed a mixed model
analysis of variance with region as the repeated mea-
sure (8 levels) while sex and tool use performance group
(BTA, WTA) were the between group factors. The differ-
ence in age of the chimpanzees at the time of tool use per-
formance data and MRI scan as well as their relatedness
coefficient were the covariates. Significant two-way inter-
actions were found between tool use skill and component
F(7, 1351)=2.773, p=.007 as well as between tool use
skill and sex F(1, 193)=5.173, p=.024. For the tool use
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Fig. 6 a Mean AQ values (+/- s.e) for each component in HTA and LTA chimpanzees assessed on the PCTB task b Mean gray matter volumes
(+/- s.e.) for each component in BTA and WTA as measured from the tool use task

by component interaction, post-hoc analysis revealed that  females, BTA chimpanzees (Mean=0.584, se=0.007) had
WTA had lower gray matter values than BTA individuals  higher values compared to WTA (Mean=0.555, se=0.010)
for the frontal and basal forebrain regions (see Fig. 6b). For  individuals. Among males, no significant difference was
the sex by tool use performance group interaction, among  found between BTA (Mean=0.580, se=0.010) and WTA
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(Mean=0.592, se=0.010) chimpanzees. For the AQ val-
ues, Kruskal-Wallis tests revealed no significant differences
between handedness groups for any of the components.
Because both the tool use performance data and the frontal
and basal forebrain region values are significantly heritable
and phenotypically associated with each other, we used
SOLAR to test whether there was a significant genetic cor-
relation between them. This analysis also failed to reveal a
significant genetic correlation between these variables, sug-
gesting that common genetic factors do not underlie their
phenotypic association.

Discussion

This study is the largest ever to quantify individual differ-
ence in gray matter volume and asymmetry in chimpanzee
brains. As was hypothesized, in general, whole brain and
region-specific variation in gray matter volume was signifi-
cantly heritable. Heritability for the 8 components ranged
between 0.16 and 0.55 suggesting small to moderate genetic
effects, which is consistent with previous reports on herita-
bility in different aspects of shape and size of chimpanzee
sulci (Hopkins 2013; Hopkins et al. 2017; Gomez-Robles et
al. 2015). Furthermore, the estimates of heritability in our
chimpanzee sample are within the range of values from pre-
viously reported findings in humans (e.g., van der Lee et al.
2017; Pizzagalli et al. 2020).

For whole brain gray matter volume as well as for the
temporal and visual components, broadly speaking, older
chimpanzees had smaller volumes but the slope in change
was greater in male compared to female apes. It has been
frequently though not always reported that the lifespan
and health span of male chimpanzees is between 6 and 8
years shorter than females, which may be associated to their
steeper decline in whole brain gray matter volume (Huber
et al. 2025; Wood et al. 2017; Havercamp et al. 2019; Dyke
et al. 1995; Che-Castaldo et al. 2021). We note here that,
without considering the relatedness of the chimpanzees, age
shows a significant negative association with gray matter
volume for all 8 regions. Thus, after accounting for the pro-
portion of individual variability in gray matter attributed to
relatedness, the variance accounted for by the age of chim-
panzees is substantially reduced. These findings reinforce
that view that without consideration of the relatedness of
subjects, the proportion of variability in gray matter volume
that is accounted for by age on different brain or behavioral
phenotypes may be overestimated.

With respect to asymmetries, no significant heritability
was found for any of the components (see Table 2 as well
as Supplemental Table 2). These findings are also consis-
tent with previous reports in human subjects and, to a lesser

extent, chimpanzees and other nonhuman primates (Gomez-
Robles et al. 2016; Sha et al. 2021; Carrion-Castillo et al.
2020; Fears et al. 2011). At present, molecular biological
evidence of specific genes that code for left-right brain
asymmetries in human and nonhuman primate brains is rel-
atively weak (Pletikos et al. 2014; Muntane et al. 2017) and
the results reported here, at least with respect to gray matter
are consistent with these results. Indeed, Gomez-Robles et
al. (2016) have reported significant population-level asym-
metries in sulci length and cortical shape in both humans
and chimpanzees; however, the sulcal asymmetries in both
species were either not or weakly significantly heritable,
reinforcing the findings from this study.

The limited contribution of genetic factors to hemi-
spheric asymmetries in chimpanzees, suggested by the
findings reported here and by Gomez-Robles et al. (2016),
raise the question of what factors might contribute to the
emergence of individual and population-level lateralization
in human and nonhuman primates. From a human develop-
mental standpoint, there is now good evidence of the pres-
ence of early positional and motor asymmetries that might
have long-term consequences on the development of behav-
ioral asymmetries such as in utero thumb-sucking, position
of the fetus during the last trimester, and post-natal factors
including head orientation and maternal cradling (Michel
1981; Previc 1991; Harris 2010; Hepper et al. 2005). Like-
wise, in nonhuman primates, there is evidence of asymme-
tries in neonatal thumb-sucking, head orientation, nipple
preferences and in adult infant cradling (Fagot and Bard
1995; Hopkins and Bard 1993, 1995; Hopkins et al. 1993;
Damerose and Hopkins 2002; Hopkins and De Lathouw-
ers 2006; Jaffe et al. 2006; Nishida 1993; Tomaszycki et
al. 1998; Zhao et al. 2008; Manning et al. 1994; Dienske
et al. 1995; Hopkins 2004; Regaiolli et al. 2018). If early
lateralized experiences or environmental factors influence
the long term development of left-right differences in the
nervous system (Collins 1975, 1985), this might explain
both individual and potentially phylogenetic differences in
behavioral and brain asymmetries.

Related to the discussion of asymmetry, we also found
that chimpanzees with higher-than-average cognition per-
formance scores (i.e., HTA) showed greater leftward biases
in the regions comprising the frontal and basal forebrain
components compared to chimpanzees performing below
average (LTA). Leftward asymmetries in higher order cog-
nitive and motor function, including language and speech,
are a feature of the human brain (Hagoort 2019; Corballis
2015) but their immediate relevance to the findings reported
here are not obvious. That said, we would speculate that
the greater leftward biases in chimpanzees with higher “g”
values may have conferred some adaptive advantage and
served as an antecedent condition or preadaptation for the
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emergence of more expansive left hemisphere asymme-
tries observed in humans after the split from the common
ancestor.

With respect to tool use performance, we found that in
females but not males, BTA chimpanzees had higher gray
matter values compared to WTA individuals. These findings
are consistent with previous studies reporting that female
chimpanzees (a) learn to use tools at an earlier age (Kahlen-
berg and Wrangham 2010; Lonsdorf et al. 2004) (b) perform
significantly better on tool use tasks than males (Hopkins et
al. 2009, 2019b) and (3) have higher gray matter volumes in
premotor cortex compared to males (Hopkins et al. 2019a,
2025). Our findings also revealed BTA chimpanzees on the
tool use performance task (as indicated by shorter latencies)
had higher gray matter values in the frontal lobe compared
to WTA apes. These results are also consistent with findings
in humans implicating frontal and basal forebrain regions
in motor learning as well as higher order motor and praxic
functions (Lewis 2006; Johnson-Frey 2004; Thibault et al.
2021).

This study is not without some limitations. First, mag-
netic resonance scans were acquired on different scanner
platforms and protocols. Ideally, all the images would have
been obtained on the same machine and protocol, but this
was not possible for a variety of pragmatic reasons. Second,
the lags in time between MRI scan acquisition and collec-
tion of the cognition and tool use data varied across subjects.
Though this was not a contributing factor, ideally, the col-
lection of the cognition and tool use data would have been
obtained more closely in time to the acquisition of the scans.
Lastly, though not a limitation, we would point out that the
wide-spread heritability found in the 65 DAVI regions is
not attributable to the observed heritability for whole brain
gray matter volume. Recall that the average gray matter
per voxel values measured from the DAVI atlas maps were
derived from the volumes that were modulated or adjusted
for whole gray matter volumes for each subject.

In summary, chimpanzees showed significant heritability
in whole brain and region-specific measures of gray matter
volume. Significant heritability coefficients were small to
moderate in their effect size and were consistent with pre-
vious findings in chimpanzees and other primate species.
We also found that chimpanzees with better tool use skill
had larger gray matter volumes in frontal and basal fore-
brain regions. Moreover, chimpanzees with higher cogni-
tion values, as assessed by the PCTB tasks, were found to
have greater leftward asymmetries in brain regions within
frontal and basal forebrain components. These collective
findings further our understanding of the role of genetic
contributions to individual, and potentially phylogenetic
variation, in cortical morphology and their phenotypic asso-
ciations with cognitive and motor functions. The findings
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also provide invaluable data on shared and potentially diver-
gent neurobiological foundations of higher order motor and
cognitive functions that distinguish chimpanzees and other
primates from humans (van den Heuvel et al. 2023).

Supplementary Information The online  version  contains
supplementary material available at https://doi.org/10.1007/s00429-0
25-03061-w.
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