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a growing body of evidence from quantitative and behav-
ioral genetic analyses demonstrating the role of genetic and 
environmental factors on individual differences in various 
features of cortical organization, including gray and white 
matter volume and integrity, cortical thickness, and gyrifi-
cation (Jansen et al. 2015; Eyler et al. 2012; Strike et al. 
2015; Grasby et al. 2020). More recently, quantitative and 
behavioral genetic studies have also examined phyloge-
netic variation among nonhuman primates in behavioral 
and brain phenotypes. For example, total brain size, corti-
cal surface areas and overall gyrification have been found 
to be significantly heritable in vervet monkeys, baboons, 
rhesus macaques, chimpanzees and humans (Kochunov et 
al. 2010; Rogers et al. 2007, 2010; Fears et al. 2009, 2011; 
Cheverud et al. 1990; Hopkins et al. 2015a, 2019a; Atkinson 
et al. 2015; Pizzagalli et al. 2016; DeCasien et al. 2020). 
Additional studies have shown that the surface area, lengths 
or shapes of selected sulci are heritable in baboons, rhesus 
monkeys, chimpanzees and humans (Kochunov et al. 2010; 
Atkinson et al. 2015; DeCasien et al. 2020; Hopkins et al. 
2017, 2021b, 2023a; Foubet et al. 2024). Interestingly, the 
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Comparative studies of primate brain organization have 
received considerable scientific attention as a means of 
identifying mechanisms underlying the evolution of human 
specific neuroanatomical and cognitive specializations 
(Sherwood et al. 2012; Rilling 2006). In humans, there is 
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Abstract
Genetic studies have increasingly identified key mechanisms that underlie individual and phylogenetic variation in behav-
ioral and brain phenotypes. Here, we used quantitative genetics to estimate heritability in whole brain and region-specific 
variation in gray matter in a sample of captive chimpanzees. We included the contributions of sex and age to individual 
variation in gray matter as well as their association with cognition and motor functions and found small to moderate heri-
tability in average gray matter volume in the majority of brain regions. By contrast, weaker estimates of heritability were 
found when considering asymmetries in gray matter across brain regions. Age was inversely associated with gray matter 
volume for the frontal lobe and the basal forebrain after accounting for sex and relatedness of the chimpanzees. Chim-
panzees that had higher cognition scores were found to have greater leftward asymmetries in the regions comprising the 
frontal lobe and basal forebrain component. Further, chimpanzees with better performance on a tool use task had higher 
gray matter volumes in the frontal and basal forebrain regions. However, no genetic associations were found between tool 
use performance or cognition and the average frontal or basal forebrain gray matter volumes or asymmetry.
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current collective findings generally suggest that heritability 
is lowest in humans compared to apes and Old World mon-
keys. For instance, Gomez-Robles et al. (2015) reported that 
relative contributions of genetic factors to within species 
variation in the spatial location of sulci and lobular land-
marks were higher in chimpanzees compared to humans, 
suggesting increased plasticity in human brain develop-
ment. This interpretation is consistent with evidence that the 
human brain, at birth, is much smaller as a proportion of its 
total adult size (~ 28%), compared to chimpanzees (~ 50%) 
and more distantly related Old World monkeys (~ 65%) 
(Leigh 2004). The general interpretation of these combined 
comparative findings is that reduced genetic contributions 
to cortical organization, coupled with increasingly longer 
periods of juvenile and adolescent development, provides 
a context for greater plasticity and allows the brain to be 
malleable in response to different cultural, social and envi-
ronmental factors.

Recently, Vickery et al. (2020) published a macro-
anatomical atlas of the chimpanzee brain that included 
measures of gray matter volume and asymmetry from 65 
brain regions in a sample of > 200 individuals (referred to 
as DAVI130). Vickery et al. (2020) reported wide-spread 
region-specific age differences in gray matter volume as 
well as evidence of population-level asymmetry in multiple 
brains regions within the chimpanzee sample. In this paper, 
we leveraged the available pedigree information on the 
chimpanzee cohort included within the Vickery et al. (2020) 
paper to assess heritability in (1) whole brain and region-
specific gray matter volume and (2) region-specific gray 
matter asymmetry. Based on previous studies on heritabil-
ity on brain phenotypes in nonhuman primates, we hypoth-
esized that chimpanzees would show significant heritability 
in whole brain and region-specific gray matter volume and 
hemispheric asymmetry.

In addition to the heritability findings, the contributions 
of sex and age to individual variation in gray matter vol-
ume was of interest in this study. As noted above, Vickery 
et al. (2020) reported widespread region-specific decline in 
gray matter volume associated with increasing age in the 
chimpanzees. Age-related decline in total intracranial, gray 
matter and white matter volume, as measured from mag-
netic resonance image scans, has also been reported in a 
multiple captive populations of nonhuman primates (Didier 
et al. 2016; Autrey et al. 2014; Frye et al. 2022; Phillips and 
Sherwood 2012; Westerhausen and Meguerditchian 2021; 
Westerhausen et al. 2020; Herndon et al. 1999; Koo et al. 
2012; Makris et al. 2007; Wisco et al. 2008; Alexander et 
al. 2008; Sherwood et al. 2011; Lacreuse et al. 2020). That 
said, most studies on aging in nonhuman primates include 
young and old individuals that are part of captive breed-
ing programs; however, seldom if ever are data on the 

relatedness of the subjects selected for use in the study pro-
vided in the reports. Ideally one would want to determine 
the relative contribution of relatedness between subjects to 
individual variation in morphology, independent of other 
factors including age and sex. This is especially the case 
for studies using cross-sectional designs. Thus, to assess the 
contribution of non-genetic factors to individual variation 
in each morphology outcome measure, we included age and 
sex and their cross-product as covariates in the heritability 
analysis. Of specific interest was whether the variable age 
or the interaction term between age and sex accounted for 
a significant proportion of variance in the brain phenotypes 
after accounting for their heritability.

Finally, cognition and motor skill performance data were 
available in many of the chimpanzees that were subjects in 
the Vickery et al. (2020) paper. Specifically, 191 chimpan-
zees within the Vickery et al. sample have been tested on the 
Primate Cognition Test Battery, a set of tasks developed to 
assess physical and social cognition in human children and 
nonhuman primates (Herrmann et al. 2007, 2010; Schmitt 
et al. 2011; Fichtel et al. 2020). Motor skill as measured 
by a tool use task were also available in 201 of these same 
chimpanzees (Hopkins et al. 2009). Previous studies have 
reported that chimpanzees show age-related decline in per-
formance on the PCTB tasks (Hopkins et al. 2021a) and that 
age-mediates associations between cognitive performance, 
gray matter covariation as well as cortical thickness (Mul-
holland et al. 2021; Hopkins et al. 2023b). Similarly, previ-
ous studies have reported that older chimpanzees perform 
more slowly on tool use tasks compared to middle-aged and 
young apes (Hopkins et al. 2009) and that variation in per-
formance is associated with gray matter covariation in pre-
motor and superior parietal cortex (Hopkins et al. 2019a). 
Because the Vickery et al. (2020) data represent a more 
granular, region-specific assessment of gray matter volu-
metric variation, here we examined whether individual dif-
ferences in cognition and tool use skill were phenotypically 
or genetically related to region-specific measures of gray 
matter volume or asymmetry after adjustment for sex and 
age. We hypothesized that significant associations would be 
found between chimpanzee cognition, tool use skill and gray 
matter volume or asymmetry in one or more brain regions.

Methods and materials

Subjects and archived gray matter volume data

As described in Vickery et al. (2020), magnetic resonance 
images (MRI) were obtained from 222 captive chimpan-
zees housed at the Yerkes National Primate Research Center 
(YNPRC, n = 87) and National Center for Chimpanzee Care 

1 3

    5   Page 2 of 14



Brain Structure and Function           (2026) 231:5 

(NCCC, n = 135) of the University of Texas MD Anderson 
Cancer Center. There were 135 females and 87 males ranging 
from 6 to 54 years of age (Mean = 26.64 years, SD = 10.4). 
All the NCCC chimpanzees as well as 11 YNPRC chim-
panzees were scanned on a 1.5T scanner. The remaining 
76 chimpanzees were all housed at the YNPRC and were 
scanned on a 3 T scanner. Details on the scanner type, scan 
sequences and post-image processing can be found in Vick-
ery et al. (2020). For each chimpanzee, the 130 region (65 
regions X 2 hemispheres) DAVI atlas maps were applied 
to the processed gray matter modulated volumes and the 
average gray matter volume per voxel was computed for the 
left and right hemispheres within each region (see Fig. 1 for 
atlas map description and legend).

Cognition assessment

Briefly, the PCTB data used in this study have been pre-
viously described in Hopkins et al. (2014b); Russell et al. 
(2011). In these studies, 191 chimpanzees were tested on 12 

tasks that measure different aspects of physical and social 
cognition. Within the sample, individual performance data 
on each task were converted to standardized z-scores. The 
z-scores were then averaged across all 12 tasks to create a 
unit weighted average (UWA) score (Woodley et al. 2015). 
Chimpanzees were subsequently classified as performing 
higher (HTA, UWA scores > 0) or lower than average (LTA, 
UWA < 0) (we note here that there were no chimpanzees 
with a UWA score = 0). Using this classification criteria, 
there were 89 HTA and 102 LTA chimpanzees in the sample. 
The PCTB tests were most frequently administered within 1 
to 3 years of the acquisition of the MRI scans (Mean differ-
ence in age = 2.33 years, SD = 1.90).

Tool use performance

Tool use performance data was available in 201 chimpan-
zees and was tested using a task designed to simulate ter-
mite fishing or ant dipping in wild chimpanzees (Bogart et 
al. 2012; Hopkins et al. 2009, 2015b; Boesch and Boesch 

Fig. 1  3D -rendering of the Juna template and the DAVI 130 parcellation of the atlas labels map projected on the surface
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when considering the entire pedigree (see Fears et al. 2009, 
2011; Rogers et al. 2007; Hopkins et al., 2014a, b, 2018). 
Total additive genetic variance (h2) is the amount over-
all phenotypic variance that is attributable to all genetic 
sources. Total phenotypic variance attributable to genetic 
and non-genetic variables is constrained to a value of 1; 
therefore, all non-genetic contributions to the phenotype are 
equal to 1 - h2.

We initially used SOLAR to determine heritability in 
estimates of whole brain gray matter. Following on from 
the initial analysis, rather than consider all brain regions, 
we reduced the 65 DAVI regions to 8 dimensions or com-
ponents of brain organization including frontal, parietal, 
temporal, visual, cingulate_insula, motor-sensory, basal 
forebrain, and cerebellar by averaging the gray matter val-
ues within each component. We adopted this approach to 
(1) to reduce the number of statistical tests and thereby limit 
Type I error and (2) simplify the comparison of the find-
ings to results from other species. The specific brain regions 
from the DAVI atlas that were included in the computation 
of the values within each dimension is shown in Fig. 2. The 
mean gray matter and AQ values for the 8 components were 
the outcome measures in the SOLAR heritability analyses. 
Sex, age, and the sex by age interaction term were covari-
ates. Because the AQ data did not meet the assumptions for 
normality, non-parametric tests were used to test for asso-
ciations with cognition, tool use skill and handedness. For 
all analyses, alpha was set to p <.05.

For the analyses assessing the associations between cog-
nition and average gray matter values, mixed model analy-
sis of co-variance (ANCOVA) was used with region as the 
repeated measure (8 levels) while sex and cognition group 
were the between group factors The difference in age of the 
chimpanzees between PCTB testing and MRI scan acquisi-
tion as well as the chimpanzee relatedness coefficients were 
the covariates. Similarly, an ANCOVA was used to examine 
the effect of tool use skill and sex on average gray matter 
values. Region was the repeated measure (8 levels) while 
sex and tool use group were the between group factors. The 
difference in age of the chimpanzees between tool use test-
ing and MRI scan acquisition as well as their relatedness 
coefficients were the covariates. Because the AQ values 
were not normally distributed, we used non-parametric tests 
(Mann-Whitney U, Kruskall-Wallis) to test for their asso-
ciation with cognition, tool use skill and hand preference.

1990; Boesch et al. 2017; Whiten et al. 1999; Marchant and 
McGrew 2007; Sanz et al. 2016). Briefly, a PVC pipe was 
attached to the subject’s home cage that was blocked at one 
end and had a small opening on the opposite end. Food with 
an adhesive quality was placed inside the PVC pipe and 
in order to obtain the food, the chimpanzee had to insert a 
small lollipop stick into the hole, then extract the stick and 
consume the food that adhered to the stick. Hand use and 
the latency to successfully insert the stick was recorded on 
50 responses for each chimpanzee (measured from the time 
the subject initiated an attempt to insert the tool with one 
hand and ended when the chimpanzee successfully inserted 
and removed the tool; Hopkins et al. 2015b, 2019c). The 
average latency of the 50 responses served as one outcome 
measure of interest. Because the two chimpanzee cohorts 
had different experiences with this tool use device, within 
the NCCC and YNPRC cohorts, the average latency scores 
were converted to standardized z-scores. Based on the 
z-scores, chimpanzees were classified as performing bet-
ter (BTA, z-score < 0) or worse (WTA, z-score = > 0) than 
average (note that there were no chimpanzees with an exact 
z-score value = 0). The majority of the tool use performance 
data were obtained within 2 to 4 years of the acquisition 
of the MRI scans (Mean difference in age = 3.69 years, 
SD = 2.87). We also recorded the frequency hand use across 
the 50 trials. Using binomial z-scores, chimpanzees were 
classified as strongly-left handed (z-score <= −1.96, n = 70), 
weakly-left-handed (z-score between >−1.96 and 0, n = 32), 
weakly right-handed (z-score between 0 and + 1.95, n = 31) 
and strongly right-handed (z-score >= +1.96, n = 68).

Data and heritability analyses

Whole brain gray matter was computed for each chimpan-
zee. Additionally, for each 65 DAVI regions, we computed 
the average gray matter volume per voxel for each subject. 
Lastly, asymmetry quotients (AQ) were computed follow-
ing the formula [(AQ = (R – L)/((R + L) *0.5)] where R and 
L represent the right and left hemisphere gray matter values 
for each brain region. Positive AQ values indicated right-
ward biases and negative values indicated leftward asym-
metries. Because magnetic resonance scans were acquired 
on different scanner platforms and protocols, as has been 
done in studies in human subjects (Orlhac et al. 2022; Tassi 
et al. 2024), we used the program Combat Harmonization 
to adjust the whole brain and 64 region specific gray matter 
volume values for variation due to scanner magnet strength 
(see Supplemental Fig. 1).

Consistent with previous work, to estimate heritabil-
ity, we used the software package SOLAR (Almasy and 
Blangero 1998). SOLAR uses a variance components 
approach to estimate the polygenic component of variance 
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Table  1. For 7 of the 8 components, age showed signifi-
cant linear associations with gray matter volume. For the 
cerebellum (and borderline for the visual component), the 
quadratic association between age and gray matter volume 
was the best fit. For the AQ measures, age showed a signifi-
cant linear association with the motor-sensory component. 
No significant linear or quadratic associations were found 
between age and the remaining 7 components.

Heritability in whole brain and region-specific gray 
matter volumes

For the whole brain analyses, significant heritability was 
found for gray matter volume (h2 = 0.340, s.e. = 0.164, 
p =.012). Sex and the interaction between sex and linear age 
were found to be significant covariates (variance accounted 

Results

Age effects

Prior to the heritability analyses, we determined whether 
age showed a significant linear or quadratic associations 
with the whole brain and region-specific gray matter vol-
ume data. This was done as a means of determining which 
model of age association (i.e., linear or quadratic) to include 
as a covariate in the SOLAR heritability analyses. For these 
tests, we used stepwise multiple regression analysis. Sex, 
linear age and quadratic age were entered in that order and 
the F-value associated with the change in R with the inclu-
sion of the linear and quadratic age variable was used to 
determine the best fit line. These findings are shown in 

Table 1  Results of stepwise regression analyses and best fit line in chimpanzees linear quadratic
Linear F-value r2 p Quadratic F-Value r2 p

Mean Gray Matter
Frontal 27.593 0.135 0 0.111 0.136 0.74
Temporal 32.793 0.147 0 1.469 0.153 0.227
Parietal 16.537 0.074 0 0.578 0.076 0.448
Visual 24.051 0.106 0 3.467 0.12 0.064
Cingulate-Insula 19.642 0.092 0 0.939 0.086 0.334
Motor-Sensory 11.592 0.07 0.001 0.001 0.07 0.97
Basal Forebrain 23.973 0.106 0 1.503 0.112 0.222
Cerebellum 27.471 0.118 0 5.601 0.14 0.019
Asymmetry
Frontal 0.175 0.015 0.676 0.832 0.019 0.363
Temporal 0.005 0.016 0.944 0.868 0.02 0.352
Parietal 2.793 0.02 0.096 2.353 0.03 0.127
Visual 0.489 0.008 0.485 3.861 0.025 0.051
Cingulate-Insula 1.737 0.019 0.189 0.047 0.019 0.828
Motor-Sensory 17.008 0.124 0.001 2.455 0.134 0.119
Basal Forebrain 1.473 0.022 0.226 2.13 0.032 0.146
Cerebellum 0.365 0.003 0.546 1.608 0.01 0.206

Fig. 2  Depiction of the regions within the DAVI 130 parcellation collapsed into the macrostructural organizational components used in this study
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We next considered heritability in the AQ values for the 
8 components. No significant heritability was found for 
any of the components (see Table 2). Sex was a significant 
covariate for the visual and motor_sensory regions with 
females having greater rightward biases than males. As with 
the region-specific gray matter volume data, for complete-
ness, the heritability estimates and proportion of variance 
accounted for by the covariates for the AQ values in all 65 
DAVI atlas can be found in Supplemental Table 2. Of the 64 
regions, only four showed significant heritability at p <.05.

Cognitive correlates of gray matter volume and 
asymmetry

For the average GM values, we performed a mixed model 
analysis of variance with region as the repeated measure 
(8 levels) while sex and cognition group (HTA, LTA) were 
the between group factors. The difference in age of the 

for = 0.189) (see Fig. 3). As can be seen, the slope in change 
between age and whole brain gray matter was stronger in 
the males compared to females. Significant heritability was 
also evident for 7 of the 8 components (the lone exception 
was the cingulate_insula component) (See Fig. 4; Table 2). 
Linear age was a significant covariate for the frontal and 
basal forebrain regions with increasing age associated with 
lower gray matter volumes (see Fig. 5a and b). The inter-
action between sex and age was a significant covariate for 
the temporal (linear) and visual (quadratic) components. For 
both components, males showed a higher change in slope 
value compared to females (see Fig.  5c and d). For com-
pleteness, the heritability estimates for all 65 regions within 
the DAVI atlas can be found in Supplemental Table 1. We 
note there that of the 65 regions within the DAVI atlas, 49 
were significantly heritable at p <.05. In light of these find-
ings, the significant heritability in 7 of 8 of the combined 
brain regions is not surprising.

Fig. 3  (A) Scatterplot of the association between age and whole brain gray matter volume for males (blue) and females (red)
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chimpanzees between PCTB testing and MRI scan acquisi-
tion as well as the chimpanzee relatedness coefficients were 
the covariates. No significant main effects or interactions 
were found. For the AQ analysis, Mann-Whitney U-tests 
revealed significant differences between the LTA and HTA 
chimpanzees for the frontal (U = 3596, p =.003) and basal 
forebrain components (U = 3761, p =.041). For both regions, 
LTA apes had greater rightward asymmetries than HTA indi-
viduals (see Fig. 6a).

Motor correlates of gray matter volume and 
asymmetry

For the average GM values, we performed a mixed model 
analysis of variance with region as the repeated mea-
sure (8 levels) while sex and tool use performance group 
(BTA, WTA) were the between group factors. The differ-
ence in age of the chimpanzees at the time of tool use per-
formance data and MRI scan as well as their relatedness 
coefficient were the covariates. Significant two-way inter-
actions were found between tool use skill and component 
F(7, 1351) = 2.773, p =.007 as well as between tool use 
skill and sex F(1, 193) = 5.173, p =.024. For the tool use 

Table 2  Heritability estimates of each component for the average Gray 
matter volume and asymmetry measures

h2 se p Covariates Variance
Mean Gray Matter
Frontal 0.572 0.154 0.000005 Age 0.117
Temporal 0.43 0.143 0.0004 Sex * Age 0.166
Parietal 0.245 0.141 0.0236 None
Visual 0.251 0.142 0.023 Sex * Age 0.162
Cingulate-Insula 0.139 0.135 0.131 None
Motor-Sensory 0.341 0.137 0.0017 None
Basal Forebrain 0.297 0.141 0.0082 Age 0.106
Cerebellum 0.281 0.126 0.006 None
Asymmetry
Frontal 0.023 0.125 0.426 None
Temporal 0 – 0.5 None
Parietal 0.175 0.152 0.106 None
Visual 0 – 0.5 Sex, Sex * 

Age
0.012

Cingulate-Insula 0.004 0.116 0.486 None
Motor-Sensory 0.003 0.171 0.492 Sex 0.063
Basal Forebrain 0.126 0.14 0.164 None
Cerebellum 0 – 0.5 None

Fig. 4  Left panel) Heritability estimates (+/- s.e.) for average gray matter volume and asymmetry for each component. Right panel) 3D rendering 
with color coded indicators of heritability in gray matter volume
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females, BTA chimpanzees (Mean = 0.584, se = 0.007) had 
higher values compared to WTA (Mean = 0.555, se = 0.010) 
individuals. Among males, no significant difference was 
found between BTA (Mean = 0.580, se = 0.010) and WTA 

by component interaction, post-hoc analysis revealed that 
WTA had lower gray matter values than BTA individuals 
for the frontal and basal forebrain regions (see Fig. 6b). For 
the sex by tool use performance group interaction, among 

Fig. 6  a Mean AQ values (+/- s.e) for each component in HTA and LTA chimpanzees assessed on the PCTB task b Mean gray matter volumes 
(+/- s.e.) for each component in BTA and WTA as measured from the tool use task

 

Fig. 5  Scatterplot of the association between age and a frontal gray matter volume b basal forebrain volume c temporal lobe components for males 
(blue) and females (red) and d visual regions for males (blue) and females (red)
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extent, chimpanzees and other nonhuman primates (Gomez-
Robles et al. 2016; Sha et al. 2021; Carrion-Castillo et al. 
2020; Fears et al. 2011). At present, molecular biological 
evidence of specific genes that code for left-right brain 
asymmetries in human and nonhuman primate brains is rel-
atively weak (Pletikos et al. 2014; Muntane et al. 2017) and 
the results reported here, at least with respect to gray matter 
are consistent with these results. Indeed, Gomez-Robles et 
al. (2016) have reported significant population-level asym-
metries in sulci length and cortical shape in both humans 
and chimpanzees; however, the sulcal asymmetries in both 
species were either not or weakly significantly heritable, 
reinforcing the findings from this study.

The limited contribution of genetic factors to hemi-
spheric asymmetries in chimpanzees, suggested by the 
findings reported here and by Gomez-Robles et al. (2016), 
raise the question of what factors might contribute to the 
emergence of individual and population-level lateralization 
in human and nonhuman primates. From a human develop-
mental standpoint, there is now good evidence of the pres-
ence of early positional and motor asymmetries that might 
have long-term consequences on the development of behav-
ioral asymmetries such as in utero thumb-sucking, position 
of the fetus during the last trimester, and post-natal factors 
including head orientation and maternal cradling (Michel 
1981; Previc 1991; Harris 2010; Hepper et al. 2005). Like-
wise, in nonhuman primates, there is evidence of asymme-
tries in neonatal thumb-sucking, head orientation, nipple 
preferences and in adult infant cradling (Fagot and Bard 
1995; Hopkins and Bard 1993, 1995; Hopkins et al. 1993; 
Damerose and Hopkins 2002; Hopkins and De Lathouw-
ers 2006; Jaffe et al. 2006; Nishida 1993; Tomaszycki et 
al. 1998; Zhao et al. 2008; Manning et al. 1994; Dienske 
et al. 1995; Hopkins 2004; Regaiolli et al. 2018). If early 
lateralized experiences or environmental factors influence 
the long term development of left-right differences in the 
nervous system (Collins 1975, 1985), this might explain 
both individual and potentially phylogenetic differences in 
behavioral and brain asymmetries.

Related to the discussion of asymmetry, we also found 
that chimpanzees with higher-than-average cognition per-
formance scores (i.e., HTA) showed greater leftward biases 
in the regions comprising the frontal and basal forebrain 
components compared to chimpanzees performing below 
average (LTA). Leftward asymmetries in higher order cog-
nitive and motor function, including language and speech, 
are a feature of the human brain (Hagoort 2019; Corballis 
2015) but their immediate relevance to the findings reported 
here are not obvious. That said, we would speculate that 
the greater leftward biases in chimpanzees with higher “g” 
values may have conferred some adaptive advantage and 
served as an antecedent condition or preadaptation for the 

(Mean = 0.592, se = 0.010) chimpanzees. For the AQ val-
ues, Kruskal-Wallis tests revealed no significant differences 
between handedness groups for any of the components. 
Because both the tool use performance data and the frontal 
and basal forebrain region values are significantly heritable 
and phenotypically associated with each other, we used 
SOLAR to test whether there was a significant genetic cor-
relation between them. This analysis also failed to reveal a 
significant genetic correlation between these variables, sug-
gesting that common genetic factors do not underlie their 
phenotypic association.

Discussion

This study is the largest ever to quantify individual differ-
ence in gray matter volume and asymmetry in chimpanzee 
brains. As was hypothesized, in general, whole brain and 
region-specific variation in gray matter volume was signifi-
cantly heritable. Heritability for the 8 components ranged 
between 0.16 and 0.55 suggesting small to moderate genetic 
effects, which is consistent with previous reports on herita-
bility in different aspects of shape and size of chimpanzee 
sulci (Hopkins 2013; Hopkins et al. 2017; Gomez-Robles et 
al. 2015). Furthermore, the estimates of heritability in our 
chimpanzee sample are within the range of values from pre-
viously reported findings in humans (e.g., van der Lee et al. 
2017; Pizzagalli et al. 2020).

For whole brain gray matter volume as well as for the 
temporal and visual components, broadly speaking, older 
chimpanzees had smaller volumes but the slope in change 
was greater in male compared to female apes. It has been 
frequently though not always reported that the lifespan 
and health span of male chimpanzees is between 6 and 8 
years shorter than females, which may be associated to their 
steeper decline in whole brain gray matter volume (Huber 
et al. 2025; Wood et al. 2017; Havercamp et al. 2019; Dyke 
et al. 1995; Che-Castaldo et al. 2021). We note here that, 
without considering the relatedness of the chimpanzees, age 
shows a significant negative association with gray matter 
volume for all 8 regions. Thus, after accounting for the pro-
portion of individual variability in gray matter attributed to 
relatedness, the variance accounted for by the age of chim-
panzees is substantially reduced. These findings reinforce 
that view that without consideration of the relatedness of 
subjects, the proportion of variability in gray matter volume 
that is accounted for by age on different brain or behavioral 
phenotypes may be overestimated.

With respect to asymmetries, no significant heritability 
was found for any of the components (see Table 2 as well 
as Supplemental Table 2). These findings are also consis-
tent with previous reports in human subjects and, to a lesser 
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also provide invaluable data on shared and potentially diver-
gent neurobiological foundations of higher order motor and 
cognitive functions that distinguish chimpanzees and other 
primates from humans (van den Heuvel et al. 2023).
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