001052068 001__ 1052068
001052068 005__ 20260120203626.0
001052068 0247_ $$2doi$$a10.1016/j.ccst.2025.100509
001052068 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-00738
001052068 037__ $$aFZJ-2026-00738
001052068 041__ $$aEnglish
001052068 082__ $$a333.7
001052068 1001_ $$00000-0002-2264-3379$$aKiefel, Robert$$b0
001052068 245__ $$aFeasibility assessment of a spray tower for gas-liquid reactive precipitation in CO2 capture
001052068 260__ $$aAmsterdam$$bElsevier$$c2025
001052068 3367_ $$2DRIVER$$aarticle
001052068 3367_ $$2DataCite$$aOutput Types/Journal article
001052068 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768922612_2060
001052068 3367_ $$2BibTeX$$aARTICLE
001052068 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001052068 3367_ $$00$$2EndNote$$aJournal Article
001052068 520__ $$aThe industrial deployment of  capture technologies for purifying gases with low  partial pressure (e.g., flue gas) has been limited due to substantial economic hurdles. Process intensification offers a pathway to enhance the cost efficiency of  sequestration. One approach that has garnered significant attention is the process integration of phase-change absorbents. Among these, bis(iminoguanidines) have shown considerable promise in recent literature. Particularly, glyoxal-bis(iminoguanidine) (GBIG) has demonstrated the ability to precipitate  with low regeneration energy demand. However, GBIG and comparable phase-change absorbents require the integration of alkaline scrubbing with reactive precipitation in a single unit operation (gas-liquid reactive precipitation), introducing operational challenges such as scaling and clogging in conventionally applied packed-bed columns. To mitigate these issues, this study investigates the use of a spray tower as a gas-liquid reactive precipitator for  capture from a flue gas surrogate. A pilot-scale spray tower is designed, constructed, and operated. Contrary to expectations, Rayleigh breakup of liquid jets induces a bimodal droplet size distribution in the lower sections of the tower, indicating limited scalability and highlighting the need for liquid recycling. For comparative purposes, the investigation includes a -precipitating system () and a non-precipitating system (), alongside GBIG. All systems demonstrate stable operability in single-pass and batch modes. During liquid recycling, small amounts of solids are entrained to the tower top. Nevertheless, no evidence of scaling or clogging is detected at the orifice plate, suggesting that the precipitated solids are significantly smaller than the orifice diameter. In the final performance comparison, the  system demonstrates superior  capture efficiency relative to the  system. However, achieving this efficiency comes at the expense of process kinetics.
001052068 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001052068 536__ $$0G:(BMBF)031B1135B$$aBMBF 031B1135B - Modellregion, BioRevierPLUS: InBio, Innovationscluster Integrierte Bioraffinerie, TP2 (031B1135B)$$c031B1135B$$x1
001052068 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001052068 7001_ $$00000-0002-7980-6132$$aGörtz, Jonas$$b1
001052068 7001_ $$00000-0003-1957-0698$$aHaß, Jan$$b2
001052068 7001_ $$aWalorski, Julius$$b3
001052068 7001_ $$aZimmer, Falk$$b4
001052068 7001_ $$0P:(DE-Juel1)194474$$aJupke, Andreas$$b5$$eCorresponding author
001052068 773__ $$0PERI:(DE-600)3129141-7$$a10.1016/j.ccst.2025.100509$$gVol. 17, p. 100509 -$$p100509 -$$tCarbon capture science & technology$$v17$$x2772-6568$$y2025
001052068 8564_ $$uhttps://juser.fz-juelich.de/record/1052068/files/1-s2.0-S2772656825001460-main.pdf$$yOpenAccess
001052068 909CO $$ooai:juser.fz-juelich.de:1052068$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001052068 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194474$$aForschungszentrum Jülich$$b5$$kFZJ
001052068 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001052068 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28
001052068 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001052068 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-12-17T14:01:24Z
001052068 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-28
001052068 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-12-17T14:01:24Z
001052068 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28
001052068 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001052068 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2021-12-17T14:01:24Z
001052068 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-28
001052068 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-28
001052068 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28
001052068 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
001052068 980__ $$ajournal
001052068 980__ $$aVDB
001052068 980__ $$aUNRESTRICTED
001052068 980__ $$aI:(DE-Juel1)IBG-2-20101118
001052068 9801_ $$aFullTexts