001     1052068
005     20260120203626.0
024 7 _ |a 10.1016/j.ccst.2025.100509
|2 doi
024 7 _ |a 10.34734/FZJ-2026-00738
|2 datacite_doi
037 _ _ |a FZJ-2026-00738
041 _ _ |a English
082 _ _ |a 333.7
100 1 _ |a Kiefel, Robert
|0 0000-0002-2264-3379
|b 0
245 _ _ |a Feasibility assessment of a spray tower for gas-liquid reactive precipitation in CO2 capture
260 _ _ |a Amsterdam
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1768922612_2060
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The industrial deployment of capture technologies for purifying gases with low partial pressure (e.g., flue gas) has been limited due to substantial economic hurdles. Process intensification offers a pathway to enhance the cost efficiency of sequestration. One approach that has garnered significant attention is the process integration of phase-change absorbents. Among these, bis(iminoguanidines) have shown considerable promise in recent literature. Particularly, glyoxal-bis(iminoguanidine) (GBIG) has demonstrated the ability to precipitate with low regeneration energy demand. However, GBIG and comparable phase-change absorbents require the integration of alkaline scrubbing with reactive precipitation in a single unit operation (gas-liquid reactive precipitation), introducing operational challenges such as scaling and clogging in conventionally applied packed-bed columns. To mitigate these issues, this study investigates the use of a spray tower as a gas-liquid reactive precipitator for capture from a flue gas surrogate. A pilot-scale spray tower is designed, constructed, and operated. Contrary to expectations, Rayleigh breakup of liquid jets induces a bimodal droplet size distribution in the lower sections of the tower, indicating limited scalability and highlighting the need for liquid recycling. For comparative purposes, the investigation includes a -precipitating system () and a non-precipitating system (), alongside GBIG. All systems demonstrate stable operability in single-pass and batch modes. During liquid recycling, small amounts of solids are entrained to the tower top. Nevertheless, no evidence of scaling or clogging is detected at the orifice plate, suggesting that the precipitated solids are significantly smaller than the orifice diameter. In the final performance comparison, the system demonstrates superior capture efficiency relative to the system. However, achieving this efficiency comes at the expense of process kinetics.
536 _ _ |a 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)
|0 G:(DE-HGF)POF4-2172
|c POF4-217
|f POF IV
|x 0
536 _ _ |a BMBF 031B1135B - Modellregion, BioRevierPLUS: InBio, Innovationscluster Integrierte Bioraffinerie, TP2 (031B1135B)
|0 G:(BMBF)031B1135B
|c 031B1135B
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Görtz, Jonas
|0 0000-0002-7980-6132
|b 1
700 1 _ |a Haß, Jan
|0 0000-0003-1957-0698
|b 2
700 1 _ |a Walorski, Julius
|b 3
700 1 _ |a Zimmer, Falk
|b 4
700 1 _ |a Jupke, Andreas
|0 P:(DE-Juel1)194474
|b 5
|e Corresponding author
773 _ _ |a 10.1016/j.ccst.2025.100509
|g Vol. 17, p. 100509 -
|0 PERI:(DE-600)3129141-7
|p 100509 -
|t Carbon capture science & technology
|v 17
|y 2025
|x 2772-6568
856 4 _ |u https://juser.fz-juelich.de/record/1052068/files/1-s2.0-S2772656825001460-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1052068
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)194474
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2172
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-12-17T14:01:24Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-12-17T14:01:24Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-12-17T14:01:24Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21