001     1052069
005     20260121204317.0
037 _ _ |a FZJ-2026-00739
041 _ _ |a English
100 1 _ |a Rubin, Noa
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a The 42nd International Conference on Machine Learning
|g ICML 2025
|c Vancouver
|d 2025-07-13 - 2025-07-19
|w Canada
245 _ _ |a From Kernels to Features: A Multi-Scale Adaptive Theory of Feature Learning
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1768997418_9544
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Feature learning in neural networks is crucial fortheir expressive power and inductive biases, moti-vating various theoretical approaches. Some ap-proaches describe network behavior after train-ing through a change in kernel scale from initial-ization, resulting in a generalization power com-parable to a Gaussian process. Conversely, inother approaches training results in the adapta-tion of the kernel to the data, involving directionalchanges to the kernel. The relationship and re-spective strengths of these two views have so farremained unresolved. This work presents a theo-retical framework of multi-scale adaptive featurelearning bridging these two views. Using methodsfrom statistical mechanics, we derive analyticalexpressions for network output statistics whichare valid across scaling regimes and in the contin-uum between them. A systematic expansion ofthe network’s probability distribution reveals thatmean-field scaling requires only a saddle-pointapproximation, while standard scaling necessi-tates additional correction terms. Remarkably,we find across regimes that kernel adaptation canbe reduced to an effective kernel rescaling whenpredicting the mean network output in the spe-cial case of a linear network. However, for linearand non-linear networks, the multi-scale adaptiveapproach captures directional feature learning ef-fects, providing richer insights than what couldbe recovered from a rescaling of the kernel alone
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|f POF IV
|x 0
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 1
536 _ _ |a MSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018)
|0 G:(DE-Juel1)HGF-SMHB-2014-2018
|c HGF-SMHB-2014-2018
|f MSNN
|x 2
536 _ _ |a ACA - Advanced Computing Architectures (SO-092)
|0 G:(DE-HGF)SO-092
|c SO-092
|x 3
536 _ _ |a GRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)
|0 G:(GEPRIS)368482240
|c 368482240
|x 4
650 2 7 |a Others
|0 V:(DE-MLZ)SciArea-250
|2 V:(DE-HGF)
|x 0
700 1 _ |a Fischer, Kirsten
|0 P:(DE-Juel1)180150
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Lindner, Javed
|0 P:(DE-Juel1)185990
|b 2
|e Corresponding author
|u fzj
700 1 _ |a Dahmen, David
|0 P:(DE-Juel1)156459
|b 3
|u fzj
700 1 _ |a Seroussi, Inbar
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ringel, Zohar
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Michael, Krämer
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Helias, Moritz
|0 P:(DE-Juel1)144806
|b 7
|u fzj
856 4 _ |u https://icml.cc/virtual/2025/poster/44430
909 C O |o oai:juser.fz-juelich.de:1052069
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180150
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)185990
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156459
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)144806
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 1
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21